Classification of glucose-level in deionized water using machine learning models and data pre-processing technique

Accurate monitoring of glucose levels is essential in the field of diabetes detection and prevention to ensure appropriate treatment planning. Conventional blood glucose monitoring methods, although widely used, are intrusive and frequently result in discomfort. This study investigates the use of Ra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2024-12, Vol.19 (12), p.e0311482
Hauptverfasser: Quang, Tri Ngo, Nguyen Thanh, Tung, Anh, Duc Le, Thi Viet, Huong Pham, Cong, Doanh Sai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page e0311482
container_title PloS one
container_volume 19
creator Quang, Tri Ngo
Nguyen Thanh, Tung
Anh, Duc Le
Thi Viet, Huong Pham
Cong, Doanh Sai
description Accurate monitoring of glucose levels is essential in the field of diabetes detection and prevention to ensure appropriate treatment planning. Conventional blood glucose monitoring methods, although widely used, are intrusive and frequently result in discomfort. This study investigates the use of Raman spectroscopy as a non-invasive method for estimating glucose concentrations. Our proposition entails employing machine learning models to categorize glucose levels by utilizing Raman spectrum data. The collection consists of deionized water samples containing glucose with defined amounts, guaranteeing great purity and little interference. We assess the efficacy of three machine learning models in categorizing glucose levels which including Extra Trees, Random Forest, and Support Vector Machine (SVM). In addition, we employ data pre-processing techniques such as fluorescence background removal and hotspot series extraction to improve the performance of the model. The primary results demonstrate that the utilization of these pre-processing techniques greatly enhances the accuracy of classification. Among these techniques, the Extra Trees model achieves the highest accuracy, reaching 95%. This study showcases the viability of employing machine learning techniques to forecast glucose levels based on Raman spectroscopy data. Additionally, it emphasizes the significance of data pre-processing in enhancing the accuracy of the model's results.
doi_str_mv 10.1371/journal.pone.0311482
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3141380292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A819044137</galeid><doaj_id>oai_doaj_org_article_2c9e16021e8444c6b329f0e8535ee5ed</doaj_id><sourcerecordid>A819044137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c572t-d64e82343a37a61c202bab315448fec9534e17dcf93235e1b835dc5c1d589c403</originalsourceid><addsrcrecordid>eNqNk0trGzEQx5fS0qRpv0FpBYXSHtbVa9e7pxJMH4ZAoK-rkKXZtYwsOZI2fXz6ys4meEsORQeJ0W_-oxnNFMVzgmeEzcm7jR-Ck3a28w5mmBHCG_qgOCUto2VNMXt4dD4pnsS4wbhiTV0_Lk5YW7O6Jey0CAsrYzSdUTIZ75DvUG8H5SOUFq7BIuOQhnxj_oBGP2WCgIZoXI-2Uq2NA2RBBncweA02Iuk00jJJtAtQ7oJXEA98ArV25mqAp8WjTtoIz8b9rPj-8cO3xefy4vLTcnF-UapqTlOpaw4NZZxJNpc1URTTlVwxUnHedKDainEgc626nCSrgKwaVmlVKaKrplUcs7Pi5Y3uzvooxnJFwQgnrMG0pZlY3hDay43YBbOV4bfw0oiDwYdeyJCMsiCoaoHUmBJoOOeqXjHadhiaKoeGCnTWej9GG1Zb0ApcCtJORKc3zqxF768FIfmHOGVZ4c2oEHwuU0xia6ICa6UDPxweXlcM5_Qz-uof9P70RqqXOQPjOp8Dq72oOG9Im5VyI2Vqdg-Vl4atUbm5OpPtE4e3E4fMJPiVejnEKJZfv_w_e_ljyr4-YtcgbVpHb4d9X8YpyG9AFXyMAbq7KhMs9rNxWw2xnw0xzkZ2e3H8Q3dOt8PA_gJIcAmv</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141380292</pqid></control><display><type>article</type><title>Classification of glucose-level in deionized water using machine learning models and data pre-processing technique</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>TestCollectionTL3OpenAccess</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Quang, Tri Ngo ; Nguyen Thanh, Tung ; Anh, Duc Le ; Thi Viet, Huong Pham ; Cong, Doanh Sai</creator><contributor>He, Hongju</contributor><creatorcontrib>Quang, Tri Ngo ; Nguyen Thanh, Tung ; Anh, Duc Le ; Thi Viet, Huong Pham ; Cong, Doanh Sai ; He, Hongju</creatorcontrib><description>Accurate monitoring of glucose levels is essential in the field of diabetes detection and prevention to ensure appropriate treatment planning. Conventional blood glucose monitoring methods, although widely used, are intrusive and frequently result in discomfort. This study investigates the use of Raman spectroscopy as a non-invasive method for estimating glucose concentrations. Our proposition entails employing machine learning models to categorize glucose levels by utilizing Raman spectrum data. The collection consists of deionized water samples containing glucose with defined amounts, guaranteeing great purity and little interference. We assess the efficacy of three machine learning models in categorizing glucose levels which including Extra Trees, Random Forest, and Support Vector Machine (SVM). In addition, we employ data pre-processing techniques such as fluorescence background removal and hotspot series extraction to improve the performance of the model. The primary results demonstrate that the utilization of these pre-processing techniques greatly enhances the accuracy of classification. Among these techniques, the Extra Trees model achieves the highest accuracy, reaching 95%. This study showcases the viability of employing machine learning techniques to forecast glucose levels based on Raman spectroscopy data. Additionally, it emphasizes the significance of data pre-processing in enhancing the accuracy of the model's results.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0311482</identifier><identifier>PMID: 39636913</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Algorithms ; Analysis ; Biology and Life Sciences ; Blood Glucose - analysis ; Blood levels ; Blood sugar ; Blood sugar monitoring ; Care and treatment ; Classification ; Computer and Information Sciences ; Data collection ; Data mining ; Deionization ; Diabetes ; Diabetes mellitus ; Diabetes therapy ; Diagnosis ; Engineering and Technology ; Evaluation ; Glucose ; Glucose - analysis ; Glucose monitoring ; Health aspects ; Humans ; Lasers ; Learning algorithms ; Machine Learning ; Medical screening ; Medicine and Health Sciences ; Methods ; Monitoring ; Monitoring methods ; Neural networks ; Physical Sciences ; Raman spectroscopy ; Research and Analysis Methods ; Sample size ; Sensors ; Spectroscopic analysis ; Spectroscopy ; Spectrum analysis ; Spectrum Analysis, Raman - methods ; Support Vector Machine ; Support vector machines ; Trees ; Water ; Water - chemistry ; Water analysis ; Water sampling</subject><ispartof>PloS one, 2024-12, Vol.19 (12), p.e0311482</ispartof><rights>Copyright: © 2024 Quang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Quang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Quang et al 2024 Quang et al</rights><rights>2024 Quang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c572t-d64e82343a37a61c202bab315448fec9534e17dcf93235e1b835dc5c1d589c403</cites><orcidid>0000-0001-8492-8647</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11620423/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11620423/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23847,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39636913$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>He, Hongju</contributor><creatorcontrib>Quang, Tri Ngo</creatorcontrib><creatorcontrib>Nguyen Thanh, Tung</creatorcontrib><creatorcontrib>Anh, Duc Le</creatorcontrib><creatorcontrib>Thi Viet, Huong Pham</creatorcontrib><creatorcontrib>Cong, Doanh Sai</creatorcontrib><title>Classification of glucose-level in deionized water using machine learning models and data pre-processing technique</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Accurate monitoring of glucose levels is essential in the field of diabetes detection and prevention to ensure appropriate treatment planning. Conventional blood glucose monitoring methods, although widely used, are intrusive and frequently result in discomfort. This study investigates the use of Raman spectroscopy as a non-invasive method for estimating glucose concentrations. Our proposition entails employing machine learning models to categorize glucose levels by utilizing Raman spectrum data. The collection consists of deionized water samples containing glucose with defined amounts, guaranteeing great purity and little interference. We assess the efficacy of three machine learning models in categorizing glucose levels which including Extra Trees, Random Forest, and Support Vector Machine (SVM). In addition, we employ data pre-processing techniques such as fluorescence background removal and hotspot series extraction to improve the performance of the model. The primary results demonstrate that the utilization of these pre-processing techniques greatly enhances the accuracy of classification. Among these techniques, the Extra Trees model achieves the highest accuracy, reaching 95%. This study showcases the viability of employing machine learning techniques to forecast glucose levels based on Raman spectroscopy data. Additionally, it emphasizes the significance of data pre-processing in enhancing the accuracy of the model's results.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Biology and Life Sciences</subject><subject>Blood Glucose - analysis</subject><subject>Blood levels</subject><subject>Blood sugar</subject><subject>Blood sugar monitoring</subject><subject>Care and treatment</subject><subject>Classification</subject><subject>Computer and Information Sciences</subject><subject>Data collection</subject><subject>Data mining</subject><subject>Deionization</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes therapy</subject><subject>Diagnosis</subject><subject>Engineering and Technology</subject><subject>Evaluation</subject><subject>Glucose</subject><subject>Glucose - analysis</subject><subject>Glucose monitoring</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Lasers</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Medical screening</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Monitoring</subject><subject>Monitoring methods</subject><subject>Neural networks</subject><subject>Physical Sciences</subject><subject>Raman spectroscopy</subject><subject>Research and Analysis Methods</subject><subject>Sample size</subject><subject>Sensors</subject><subject>Spectroscopic analysis</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Spectrum Analysis, Raman - methods</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><subject>Trees</subject><subject>Water</subject><subject>Water - chemistry</subject><subject>Water analysis</subject><subject>Water sampling</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk0trGzEQx5fS0qRpv0FpBYXSHtbVa9e7pxJMH4ZAoK-rkKXZtYwsOZI2fXz6ys4meEsORQeJ0W_-oxnNFMVzgmeEzcm7jR-Ck3a28w5mmBHCG_qgOCUto2VNMXt4dD4pnsS4wbhiTV0_Lk5YW7O6Jey0CAsrYzSdUTIZ75DvUG8H5SOUFq7BIuOQhnxj_oBGP2WCgIZoXI-2Uq2NA2RBBncweA02Iuk00jJJtAtQ7oJXEA98ArV25mqAp8WjTtoIz8b9rPj-8cO3xefy4vLTcnF-UapqTlOpaw4NZZxJNpc1URTTlVwxUnHedKDainEgc626nCSrgKwaVmlVKaKrplUcs7Pi5Y3uzvooxnJFwQgnrMG0pZlY3hDay43YBbOV4bfw0oiDwYdeyJCMsiCoaoHUmBJoOOeqXjHadhiaKoeGCnTWej9GG1Zb0ApcCtJORKc3zqxF768FIfmHOGVZ4c2oEHwuU0xia6ICa6UDPxweXlcM5_Qz-uof9P70RqqXOQPjOp8Dq72oOG9Im5VyI2Vqdg-Vl4atUbm5OpPtE4e3E4fMJPiVejnEKJZfv_w_e_ljyr4-YtcgbVpHb4d9X8YpyG9AFXyMAbq7KhMs9rNxWw2xnw0xzkZ2e3H8Q3dOt8PA_gJIcAmv</recordid><startdate>20241205</startdate><enddate>20241205</enddate><creator>Quang, Tri Ngo</creator><creator>Nguyen Thanh, Tung</creator><creator>Anh, Duc Le</creator><creator>Thi Viet, Huong Pham</creator><creator>Cong, Doanh Sai</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8492-8647</orcidid></search><sort><creationdate>20241205</creationdate><title>Classification of glucose-level in deionized water using machine learning models and data pre-processing technique</title><author>Quang, Tri Ngo ; Nguyen Thanh, Tung ; Anh, Duc Le ; Thi Viet, Huong Pham ; Cong, Doanh Sai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c572t-d64e82343a37a61c202bab315448fec9534e17dcf93235e1b835dc5c1d589c403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Biology and Life Sciences</topic><topic>Blood Glucose - analysis</topic><topic>Blood levels</topic><topic>Blood sugar</topic><topic>Blood sugar monitoring</topic><topic>Care and treatment</topic><topic>Classification</topic><topic>Computer and Information Sciences</topic><topic>Data collection</topic><topic>Data mining</topic><topic>Deionization</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes therapy</topic><topic>Diagnosis</topic><topic>Engineering and Technology</topic><topic>Evaluation</topic><topic>Glucose</topic><topic>Glucose - analysis</topic><topic>Glucose monitoring</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Lasers</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Medical screening</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Monitoring</topic><topic>Monitoring methods</topic><topic>Neural networks</topic><topic>Physical Sciences</topic><topic>Raman spectroscopy</topic><topic>Research and Analysis Methods</topic><topic>Sample size</topic><topic>Sensors</topic><topic>Spectroscopic analysis</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Spectrum Analysis, Raman - methods</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><topic>Trees</topic><topic>Water</topic><topic>Water - chemistry</topic><topic>Water analysis</topic><topic>Water sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quang, Tri Ngo</creatorcontrib><creatorcontrib>Nguyen Thanh, Tung</creatorcontrib><creatorcontrib>Anh, Duc Le</creatorcontrib><creatorcontrib>Thi Viet, Huong Pham</creatorcontrib><creatorcontrib>Cong, Doanh Sai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>TestCollectionTL3OpenAccess</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quang, Tri Ngo</au><au>Nguyen Thanh, Tung</au><au>Anh, Duc Le</au><au>Thi Viet, Huong Pham</au><au>Cong, Doanh Sai</au><au>He, Hongju</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of glucose-level in deionized water using machine learning models and data pre-processing technique</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-12-05</date><risdate>2024</risdate><volume>19</volume><issue>12</issue><spage>e0311482</spage><pages>e0311482-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Accurate monitoring of glucose levels is essential in the field of diabetes detection and prevention to ensure appropriate treatment planning. Conventional blood glucose monitoring methods, although widely used, are intrusive and frequently result in discomfort. This study investigates the use of Raman spectroscopy as a non-invasive method for estimating glucose concentrations. Our proposition entails employing machine learning models to categorize glucose levels by utilizing Raman spectrum data. The collection consists of deionized water samples containing glucose with defined amounts, guaranteeing great purity and little interference. We assess the efficacy of three machine learning models in categorizing glucose levels which including Extra Trees, Random Forest, and Support Vector Machine (SVM). In addition, we employ data pre-processing techniques such as fluorescence background removal and hotspot series extraction to improve the performance of the model. The primary results demonstrate that the utilization of these pre-processing techniques greatly enhances the accuracy of classification. Among these techniques, the Extra Trees model achieves the highest accuracy, reaching 95%. This study showcases the viability of employing machine learning techniques to forecast glucose levels based on Raman spectroscopy data. Additionally, it emphasizes the significance of data pre-processing in enhancing the accuracy of the model's results.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>39636913</pmid><doi>10.1371/journal.pone.0311482</doi><tpages>e0311482</tpages><orcidid>https://orcid.org/0000-0001-8492-8647</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2024-12, Vol.19 (12), p.e0311482
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_3141380292
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; TestCollectionTL3OpenAccess; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Accuracy
Algorithms
Analysis
Biology and Life Sciences
Blood Glucose - analysis
Blood levels
Blood sugar
Blood sugar monitoring
Care and treatment
Classification
Computer and Information Sciences
Data collection
Data mining
Deionization
Diabetes
Diabetes mellitus
Diabetes therapy
Diagnosis
Engineering and Technology
Evaluation
Glucose
Glucose - analysis
Glucose monitoring
Health aspects
Humans
Lasers
Learning algorithms
Machine Learning
Medical screening
Medicine and Health Sciences
Methods
Monitoring
Monitoring methods
Neural networks
Physical Sciences
Raman spectroscopy
Research and Analysis Methods
Sample size
Sensors
Spectroscopic analysis
Spectroscopy
Spectrum analysis
Spectrum Analysis, Raman - methods
Support Vector Machine
Support vector machines
Trees
Water
Water - chemistry
Water analysis
Water sampling
title Classification of glucose-level in deionized water using machine learning models and data pre-processing technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A02%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20glucose-level%20in%20deionized%20water%20using%20machine%20learning%20models%20and%20data%20pre-processing%20technique&rft.jtitle=PloS%20one&rft.au=Quang,%20Tri%20Ngo&rft.date=2024-12-05&rft.volume=19&rft.issue=12&rft.spage=e0311482&rft.pages=e0311482-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0311482&rft_dat=%3Cgale_plos_%3EA819044137%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3141380292&rft_id=info:pmid/39636913&rft_galeid=A819044137&rft_doaj_id=oai_doaj_org_article_2c9e16021e8444c6b329f0e8535ee5ed&rfr_iscdi=true