Optimizing makespan and resource utilization in cloud computing environment via evolutionary scheduling approach
As a new computing resources distribution platform, cloud technology greatly influenced society with the conception of on-demand resource usage through virtualization technology. Virtualization technology allows physical resource usage in a way that will enable multiple end-users to have similar har...
Gespeichert in:
Veröffentlicht in: | PloS one 2024-11, Vol.19 (11), p.e0311814 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | e0311814 |
container_title | PloS one |
container_volume | 19 |
creator | K Karim, Faten Ghorashi, Sara Alkhalaf, Salem H A Hamza, Saadia Ben Ishak, Anis Abdel-Khalek, S |
description | As a new computing resources distribution platform, cloud technology greatly influenced society with the conception of on-demand resource usage through virtualization technology. Virtualization technology allows physical resource usage in a way that will enable multiple end-users to have similar hardware infrastructure. In the cloud, many challenges exist on the provider side due to the expectations of clients. Resource scheduling (RS) is the most significant nondeterministic polynomial time (NP) hard problem in the cloud, owing to its crucial impact on cloud performance. Previous research found that metaheuristics can dramatically increase CC performance if deployed as scheduling algorithms. Therefore, this study develops an evolutionary algorithm-based scheduling approach for makespan optimization and resource utilization (EASA-MORU) technique in the cloud environment. The EASA-MORU technique aims to maximize the makespan and effectively use the resources in the cloud infrastructure. In the EASA-MORU technique, the dung beetle optimization (DBO) technique is used for scheduling purposes. Moreover, the EASA-MORU technique balances the load properly and distributes the resources based on the demands of the cloud infrastructure. The performance evaluation of the EASA-MORU method is tested using a series of performance measures. A wide range of comprehensive comparison studies emphasized that the EASA-MORU technique performs better than other methods in different evaluation measures. |
doi_str_mv | 10.1371/journal.pone.0311814 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3132094695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A817215589</galeid><doaj_id>oai_doaj_org_article_5900f0a5b6b74fc68466f7c165855ce7</doaj_id><sourcerecordid>A817215589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-3a0bd5a13bf833c98c69c5a5d6223ea546ad0268bc0c5194a5c173edf34d0a633</originalsourceid><addsrcrecordid>eNqNkl-L1DAUxYso7rr6DUQLgrgPMyZNk7aPy6LuwMKA_17DbZLOZEyTmqSD7qc3dbrLjuyD5CHh5nfuuVxOlr3EaIlJhd_v3OgtmOXgrFoignGNy0fZKW5IsWAFIo_vvU-yZyHsEKKkZuxpdkIaWrGqYafZsB6i7vWNtpu8hx8qDGBzsDL3KiQDofIxaqNvIGpnc21zYdwoc-H6IX0kkbJ77Z3tlY35XkOu9s6MEwz-dx7EVsnRTBwMg3cgts-zJx2YoF7M91n27eOHr5dXi-v1p9XlxfVCUMziggBqJQVM2q4mRDS1YI2gQCUrCqKAlgwkKljdCpQETQlU4Ioo2ZFSImCEnGWvD30H4wKflxU4waRATckamojVgZAOdnzwuk8jcwea_y04v-HgoxZGcdog1CGgLWurshOsLhnrKoEZrSkVqkq93s1u3v0cVYi810EoY8AqNx5scYlYiRP65h_04eFmagPJX9vORQ9iasovalwVmNK6SdTyASodqXotUjA6nepHgvMjQWKi-hU3MIbAV18-_z-7_n7Mvr3HbhWYuA1zEMIxWB5A4V0IXnV3i8eIT7m-3Qafcs3nXCfZq3lpY9sreSe6DTL5A8mN81s</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132094695</pqid></control><display><type>article</type><title>Optimizing makespan and resource utilization in cloud computing environment via evolutionary scheduling approach</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>K Karim, Faten ; Ghorashi, Sara ; Alkhalaf, Salem ; H A Hamza, Saadia ; Ben Ishak, Anis ; Abdel-Khalek, S</creator><contributor>Mian Qaisar, Saeed</contributor><creatorcontrib>K Karim, Faten ; Ghorashi, Sara ; Alkhalaf, Salem ; H A Hamza, Saadia ; Ben Ishak, Anis ; Abdel-Khalek, S ; Mian Qaisar, Saeed</creatorcontrib><description>As a new computing resources distribution platform, cloud technology greatly influenced society with the conception of on-demand resource usage through virtualization technology. Virtualization technology allows physical resource usage in a way that will enable multiple end-users to have similar hardware infrastructure. In the cloud, many challenges exist on the provider side due to the expectations of clients. Resource scheduling (RS) is the most significant nondeterministic polynomial time (NP) hard problem in the cloud, owing to its crucial impact on cloud performance. Previous research found that metaheuristics can dramatically increase CC performance if deployed as scheduling algorithms. Therefore, this study develops an evolutionary algorithm-based scheduling approach for makespan optimization and resource utilization (EASA-MORU) technique in the cloud environment. The EASA-MORU technique aims to maximize the makespan and effectively use the resources in the cloud infrastructure. In the EASA-MORU technique, the dung beetle optimization (DBO) technique is used for scheduling purposes. Moreover, the EASA-MORU technique balances the load properly and distributes the resources based on the demands of the cloud infrastructure. The performance evaluation of the EASA-MORU method is tested using a series of performance measures. A wide range of comprehensive comparison studies emphasized that the EASA-MORU technique performs better than other methods in different evaluation measures.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0311814</identifier><identifier>PMID: 39576796</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Cloud Computing ; Consumers ; Dung ; Evolutionary algorithms ; Fertility ; Genetic algorithms ; Heuristic methods ; Infrastructure ; Literature reviews ; Mathematical optimization ; Methods ; Neural networks ; Optimization ; Performance evaluation ; Polynomials ; Quality management ; Resource allocation ; Resource scheduling ; Resource utilization ; Scheduling ; Scheduling (Management) ; Workloads</subject><ispartof>PloS one, 2024-11, Vol.19 (11), p.e0311814</ispartof><rights>Copyright: © 2024 K. Karim et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 K. Karim et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 K. Karim et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c516t-3a0bd5a13bf833c98c69c5a5d6223ea546ad0268bc0c5194a5c173edf34d0a633</cites><orcidid>0000-0002-5900-6752 ; 0000-0002-3619-2070</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0311814&type=printable$$EPDF$$P50$$Gplos$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.plos.org/plosone/article?id=10.1371/journal.pone.0311814$$EHTML$$P50$$Gplos$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,2915,23847,27905,27906,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39576796$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Mian Qaisar, Saeed</contributor><creatorcontrib>K Karim, Faten</creatorcontrib><creatorcontrib>Ghorashi, Sara</creatorcontrib><creatorcontrib>Alkhalaf, Salem</creatorcontrib><creatorcontrib>H A Hamza, Saadia</creatorcontrib><creatorcontrib>Ben Ishak, Anis</creatorcontrib><creatorcontrib>Abdel-Khalek, S</creatorcontrib><title>Optimizing makespan and resource utilization in cloud computing environment via evolutionary scheduling approach</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>As a new computing resources distribution platform, cloud technology greatly influenced society with the conception of on-demand resource usage through virtualization technology. Virtualization technology allows physical resource usage in a way that will enable multiple end-users to have similar hardware infrastructure. In the cloud, many challenges exist on the provider side due to the expectations of clients. Resource scheduling (RS) is the most significant nondeterministic polynomial time (NP) hard problem in the cloud, owing to its crucial impact on cloud performance. Previous research found that metaheuristics can dramatically increase CC performance if deployed as scheduling algorithms. Therefore, this study develops an evolutionary algorithm-based scheduling approach for makespan optimization and resource utilization (EASA-MORU) technique in the cloud environment. The EASA-MORU technique aims to maximize the makespan and effectively use the resources in the cloud infrastructure. In the EASA-MORU technique, the dung beetle optimization (DBO) technique is used for scheduling purposes. Moreover, the EASA-MORU technique balances the load properly and distributes the resources based on the demands of the cloud infrastructure. The performance evaluation of the EASA-MORU method is tested using a series of performance measures. A wide range of comprehensive comparison studies emphasized that the EASA-MORU technique performs better than other methods in different evaluation measures.</description><subject>Algorithms</subject><subject>Cloud Computing</subject><subject>Consumers</subject><subject>Dung</subject><subject>Evolutionary algorithms</subject><subject>Fertility</subject><subject>Genetic algorithms</subject><subject>Heuristic methods</subject><subject>Infrastructure</subject><subject>Literature reviews</subject><subject>Mathematical optimization</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Performance evaluation</subject><subject>Polynomials</subject><subject>Quality management</subject><subject>Resource allocation</subject><subject>Resource scheduling</subject><subject>Resource utilization</subject><subject>Scheduling</subject><subject>Scheduling (Management)</subject><subject>Workloads</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl-L1DAUxYso7rr6DUQLgrgPMyZNk7aPy6LuwMKA_17DbZLOZEyTmqSD7qc3dbrLjuyD5CHh5nfuuVxOlr3EaIlJhd_v3OgtmOXgrFoignGNy0fZKW5IsWAFIo_vvU-yZyHsEKKkZuxpdkIaWrGqYafZsB6i7vWNtpu8hx8qDGBzsDL3KiQDofIxaqNvIGpnc21zYdwoc-H6IX0kkbJ77Z3tlY35XkOu9s6MEwz-dx7EVsnRTBwMg3cgts-zJx2YoF7M91n27eOHr5dXi-v1p9XlxfVCUMziggBqJQVM2q4mRDS1YI2gQCUrCqKAlgwkKljdCpQETQlU4Ioo2ZFSImCEnGWvD30H4wKflxU4waRATckamojVgZAOdnzwuk8jcwea_y04v-HgoxZGcdog1CGgLWurshOsLhnrKoEZrSkVqkq93s1u3v0cVYi810EoY8AqNx5scYlYiRP65h_04eFmagPJX9vORQ9iasovalwVmNK6SdTyASodqXotUjA6nepHgvMjQWKi-hU3MIbAV18-_z-7_n7Mvr3HbhWYuA1zEMIxWB5A4V0IXnV3i8eIT7m-3Qafcs3nXCfZq3lpY9sreSe6DTL5A8mN81s</recordid><startdate>20241122</startdate><enddate>20241122</enddate><creator>K Karim, Faten</creator><creator>Ghorashi, Sara</creator><creator>Alkhalaf, Salem</creator><creator>H A Hamza, Saadia</creator><creator>Ben Ishak, Anis</creator><creator>Abdel-Khalek, S</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5900-6752</orcidid><orcidid>https://orcid.org/0000-0002-3619-2070</orcidid></search><sort><creationdate>20241122</creationdate><title>Optimizing makespan and resource utilization in cloud computing environment via evolutionary scheduling approach</title><author>K Karim, Faten ; Ghorashi, Sara ; Alkhalaf, Salem ; H A Hamza, Saadia ; Ben Ishak, Anis ; Abdel-Khalek, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-3a0bd5a13bf833c98c69c5a5d6223ea546ad0268bc0c5194a5c173edf34d0a633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Cloud Computing</topic><topic>Consumers</topic><topic>Dung</topic><topic>Evolutionary algorithms</topic><topic>Fertility</topic><topic>Genetic algorithms</topic><topic>Heuristic methods</topic><topic>Infrastructure</topic><topic>Literature reviews</topic><topic>Mathematical optimization</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Performance evaluation</topic><topic>Polynomials</topic><topic>Quality management</topic><topic>Resource allocation</topic><topic>Resource scheduling</topic><topic>Resource utilization</topic><topic>Scheduling</topic><topic>Scheduling (Management)</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>K Karim, Faten</creatorcontrib><creatorcontrib>Ghorashi, Sara</creatorcontrib><creatorcontrib>Alkhalaf, Salem</creatorcontrib><creatorcontrib>H A Hamza, Saadia</creatorcontrib><creatorcontrib>Ben Ishak, Anis</creatorcontrib><creatorcontrib>Abdel-Khalek, S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>K Karim, Faten</au><au>Ghorashi, Sara</au><au>Alkhalaf, Salem</au><au>H A Hamza, Saadia</au><au>Ben Ishak, Anis</au><au>Abdel-Khalek, S</au><au>Mian Qaisar, Saeed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing makespan and resource utilization in cloud computing environment via evolutionary scheduling approach</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-11-22</date><risdate>2024</risdate><volume>19</volume><issue>11</issue><spage>e0311814</spage><pages>e0311814-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>As a new computing resources distribution platform, cloud technology greatly influenced society with the conception of on-demand resource usage through virtualization technology. Virtualization technology allows physical resource usage in a way that will enable multiple end-users to have similar hardware infrastructure. In the cloud, many challenges exist on the provider side due to the expectations of clients. Resource scheduling (RS) is the most significant nondeterministic polynomial time (NP) hard problem in the cloud, owing to its crucial impact on cloud performance. Previous research found that metaheuristics can dramatically increase CC performance if deployed as scheduling algorithms. Therefore, this study develops an evolutionary algorithm-based scheduling approach for makespan optimization and resource utilization (EASA-MORU) technique in the cloud environment. The EASA-MORU technique aims to maximize the makespan and effectively use the resources in the cloud infrastructure. In the EASA-MORU technique, the dung beetle optimization (DBO) technique is used for scheduling purposes. Moreover, the EASA-MORU technique balances the load properly and distributes the resources based on the demands of the cloud infrastructure. The performance evaluation of the EASA-MORU method is tested using a series of performance measures. A wide range of comprehensive comparison studies emphasized that the EASA-MORU technique performs better than other methods in different evaluation measures.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>39576796</pmid><doi>10.1371/journal.pone.0311814</doi><tpages>e0311814</tpages><orcidid>https://orcid.org/0000-0002-5900-6752</orcidid><orcidid>https://orcid.org/0000-0002-3619-2070</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2024-11, Vol.19 (11), p.e0311814 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_3132094695 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algorithms Cloud Computing Consumers Dung Evolutionary algorithms Fertility Genetic algorithms Heuristic methods Infrastructure Literature reviews Mathematical optimization Methods Neural networks Optimization Performance evaluation Polynomials Quality management Resource allocation Resource scheduling Resource utilization Scheduling Scheduling (Management) Workloads |
title | Optimizing makespan and resource utilization in cloud computing environment via evolutionary scheduling approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T06%3A19%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20makespan%20and%20resource%20utilization%20in%20cloud%20computing%20environment%20via%20evolutionary%20scheduling%20approach&rft.jtitle=PloS%20one&rft.au=K%20Karim,%20Faten&rft.date=2024-11-22&rft.volume=19&rft.issue=11&rft.spage=e0311814&rft.pages=e0311814-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0311814&rft_dat=%3Cgale_plos_%3EA817215589%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3132094695&rft_id=info:pmid/39576796&rft_galeid=A817215589&rft_doaj_id=oai_doaj_org_article_5900f0a5b6b74fc68466f7c165855ce7&rfr_iscdi=true |