Genomic variants associated with type 2 diabetes mellitus among Filipinos

Type 2 diabetes mellitus leads to debilitating complications that affect the quality of life of many Filipinos. Genetic variability contributes to 30% to 70% of T2DM risk. Determining genomic variants related to type 2 diabetes mellitus susceptibility can lead to early detection to prevent complicat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2024-11, Vol.19 (11), p.e0312291
Hauptverfasser: C Cutiongco-de la Paz, Eva Maria, Nevado, Jr, Jose B, Paz-Pacheco, Elizabeth T, Jasul, Jr, Gabriel V, Aman, Aimee Yvonne Criselle L, Francisco, Mark David G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page e0312291
container_title PloS one
container_volume 19
creator C Cutiongco-de la Paz, Eva Maria
Nevado, Jr, Jose B
Paz-Pacheco, Elizabeth T
Jasul, Jr, Gabriel V
Aman, Aimee Yvonne Criselle L
Francisco, Mark David G
description Type 2 diabetes mellitus leads to debilitating complications that affect the quality of life of many Filipinos. Genetic variability contributes to 30% to 70% of T2DM risk. Determining genomic variants related to type 2 diabetes mellitus susceptibility can lead to early detection to prevent complications. However, interethnic variability in risk and genetic susceptibility exists. This study aimed to identify variants associated with type 2 diabetes mellitus among Filipinos using a case-control design frequency matched for age and sex. A comparison was made between 66 unrelated Filipino adults with type 2 diabetes mellitus and 121 without. Genotyping was done using a candidate gene approach on genetic variants of type 2 diabetes mellitus and its complications involving allelic association and genotypic association studies with correction for multiple testing. Nine (9) significant variants, mostly involved in glucose and energy metabolism, associated with type 2 diabetes mellitus in Filipinos were found. Notably, a CDKAL1 variant (rs7766070) confers the highest level of risk while rs7119 (HMG20A) and rs708272 (CETP) have high risk allele frequencies in this population at 0.77 and 0.66, respectively, making them potentially good markers for type 2 diabetes mellitus screening. The data generated can be valuable in developing genetic risk prediction models for type 2 diabetes mellitus to diagnose and prevent the condition among Filipinos.
doi_str_mv 10.1371/journal.pone.0312291
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3130599946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A816731625</galeid><doaj_id>oai_doaj_org_article_13afa1e458894ab38fcc600d85e3c8c3</doaj_id><sourcerecordid>A816731625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c572t-b96a30b342f7f7a7ab61d9ce414310300ba94db1c60ff1215fba52bab2c2ee913</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEoqXwDxBEQkJw2MVjx058QlVFy0qVKvF1tSaOvesqiZfYKfTf42XTaoN6QD7YGj_zjmf8ZtlLIEtgJXy49uPQY7vc-t4sCQNKJTzKjkEyuhCUsMcH56PsWQjXhHBWCfE0O2KSC4CCHGerC9P7zun8BgeHfQw5huC1w2ia_JeLmzzebk1O88ZhbaIJeWfa1sUxgZ3v1_m5a93W9T48z55YbIN5Me0n2ffzT9_OPi8ury5WZ6eXC81LGhe1FMhIzQpqS1tiibWARmpTQMGAMEJqlEVTgxbEWqDAbY2c1lhTTY2RwE6y13vdbeuDmqYQFANGuJSyEIlY7YnG47XaDq7D4VZ5dOpvwA9rhUN0ujUKGFoEU_CqkgXWrLI6FSZNxQ3TlWZJ6-NUbaw702jTxwHbmej8pncbtfY3CoCXvKx2Cu8mhcH_HE2IqnNBpyFib_y4f3hFRSV36Jt_0Ifbm6g1pg5cb30qrHei6rQCUTIQlCdq-QCVVmPSdyfPWJfis4T3s4TERPM7rnEMQa2-fvl_9urHnH17wG4MtnETfDtG5_swB4s9qAcfwmDs_ZSBqJ3l76ahdpZXk-VT2qvDH7pPuvM4-wOqefsv</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130599946</pqid></control><display><type>article</type><title>Genomic variants associated with type 2 diabetes mellitus among Filipinos</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>C Cutiongco-de la Paz, Eva Maria ; Nevado, Jr, Jose B ; Paz-Pacheco, Elizabeth T ; Jasul, Jr, Gabriel V ; Aman, Aimee Yvonne Criselle L ; Francisco, Mark David G</creator><creatorcontrib>C Cutiongco-de la Paz, Eva Maria ; Nevado, Jr, Jose B ; Paz-Pacheco, Elizabeth T ; Jasul, Jr, Gabriel V ; Aman, Aimee Yvonne Criselle L ; Francisco, Mark David G</creatorcontrib><description>Type 2 diabetes mellitus leads to debilitating complications that affect the quality of life of many Filipinos. Genetic variability contributes to 30% to 70% of T2DM risk. Determining genomic variants related to type 2 diabetes mellitus susceptibility can lead to early detection to prevent complications. However, interethnic variability in risk and genetic susceptibility exists. This study aimed to identify variants associated with type 2 diabetes mellitus among Filipinos using a case-control design frequency matched for age and sex. A comparison was made between 66 unrelated Filipino adults with type 2 diabetes mellitus and 121 without. Genotyping was done using a candidate gene approach on genetic variants of type 2 diabetes mellitus and its complications involving allelic association and genotypic association studies with correction for multiple testing. Nine (9) significant variants, mostly involved in glucose and energy metabolism, associated with type 2 diabetes mellitus in Filipinos were found. Notably, a CDKAL1 variant (rs7766070) confers the highest level of risk while rs7119 (HMG20A) and rs708272 (CETP) have high risk allele frequencies in this population at 0.77 and 0.66, respectively, making them potentially good markers for type 2 diabetes mellitus screening. The data generated can be valuable in developing genetic risk prediction models for type 2 diabetes mellitus to diagnose and prevent the condition among Filipinos.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0312291</identifier><identifier>PMID: 39561140</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Aged ; Biology and Life Sciences ; Case-Control Studies ; Complications and side effects ; Creatinine ; Development and progression ; Diabetes ; Diabetes mellitus ; Diabetes mellitus (non-insulin dependent) ; Diabetes Mellitus, Type 2 - genetics ; Diabetes therapy ; Diagnosis ; Disease susceptibility ; Energy metabolism ; Ethylenediaminetetraacetic acid ; Evaluation ; Female ; Gene Frequency ; Genes ; Genetic aspects ; Genetic diversity ; Genetic Predisposition to Disease ; Genetic variability ; Genetic variance ; Genomes ; Genomics ; Genotype ; Genotyping ; Glucose metabolism ; Health risk assessment ; Humans ; Hyperglycemia ; Male ; Medical screening ; Medicine and Health Sciences ; Middle Aged ; Mortality ; Philippines ; Polymorphism, Single Nucleotide ; Population ; Population genetics ; Prediction models ; Quality control ; Quality of life ; Regression analysis ; Risk factors ; Risk levels ; Type 2 diabetes</subject><ispartof>PloS one, 2024-11, Vol.19 (11), p.e0312291</ispartof><rights>Copyright: © 2024 C. Cutiongco-de la Paz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 C. Cutiongco-de la Paz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 C. Cutiongco-de la Paz et al 2024 C. Cutiongco-de la Paz et al</rights><rights>2024 C. Cutiongco-de la Paz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c572t-b96a30b342f7f7a7ab61d9ce414310300ba94db1c60ff1215fba52bab2c2ee913</cites><orcidid>0000-0002-8131-4639</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575783/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575783/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39561140$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>C Cutiongco-de la Paz, Eva Maria</creatorcontrib><creatorcontrib>Nevado, Jr, Jose B</creatorcontrib><creatorcontrib>Paz-Pacheco, Elizabeth T</creatorcontrib><creatorcontrib>Jasul, Jr, Gabriel V</creatorcontrib><creatorcontrib>Aman, Aimee Yvonne Criselle L</creatorcontrib><creatorcontrib>Francisco, Mark David G</creatorcontrib><title>Genomic variants associated with type 2 diabetes mellitus among Filipinos</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Type 2 diabetes mellitus leads to debilitating complications that affect the quality of life of many Filipinos. Genetic variability contributes to 30% to 70% of T2DM risk. Determining genomic variants related to type 2 diabetes mellitus susceptibility can lead to early detection to prevent complications. However, interethnic variability in risk and genetic susceptibility exists. This study aimed to identify variants associated with type 2 diabetes mellitus among Filipinos using a case-control design frequency matched for age and sex. A comparison was made between 66 unrelated Filipino adults with type 2 diabetes mellitus and 121 without. Genotyping was done using a candidate gene approach on genetic variants of type 2 diabetes mellitus and its complications involving allelic association and genotypic association studies with correction for multiple testing. Nine (9) significant variants, mostly involved in glucose and energy metabolism, associated with type 2 diabetes mellitus in Filipinos were found. Notably, a CDKAL1 variant (rs7766070) confers the highest level of risk while rs7119 (HMG20A) and rs708272 (CETP) have high risk allele frequencies in this population at 0.77 and 0.66, respectively, making them potentially good markers for type 2 diabetes mellitus screening. The data generated can be valuable in developing genetic risk prediction models for type 2 diabetes mellitus to diagnose and prevent the condition among Filipinos.</description><subject>Adult</subject><subject>Aged</subject><subject>Biology and Life Sciences</subject><subject>Case-Control Studies</subject><subject>Complications and side effects</subject><subject>Creatinine</subject><subject>Development and progression</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetes Mellitus, Type 2 - genetics</subject><subject>Diabetes therapy</subject><subject>Diagnosis</subject><subject>Disease susceptibility</subject><subject>Energy metabolism</subject><subject>Ethylenediaminetetraacetic acid</subject><subject>Evaluation</subject><subject>Female</subject><subject>Gene Frequency</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic diversity</subject><subject>Genetic Predisposition to Disease</subject><subject>Genetic variability</subject><subject>Genetic variance</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotype</subject><subject>Genotyping</subject><subject>Glucose metabolism</subject><subject>Health risk assessment</subject><subject>Humans</subject><subject>Hyperglycemia</subject><subject>Male</subject><subject>Medical screening</subject><subject>Medicine and Health Sciences</subject><subject>Middle Aged</subject><subject>Mortality</subject><subject>Philippines</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Population</subject><subject>Population genetics</subject><subject>Prediction models</subject><subject>Quality control</subject><subject>Quality of life</subject><subject>Regression analysis</subject><subject>Risk factors</subject><subject>Risk levels</subject><subject>Type 2 diabetes</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk1v1DAQhiMEoqXwDxBEQkJw2MVjx058QlVFy0qVKvF1tSaOvesqiZfYKfTf42XTaoN6QD7YGj_zjmf8ZtlLIEtgJXy49uPQY7vc-t4sCQNKJTzKjkEyuhCUsMcH56PsWQjXhHBWCfE0O2KSC4CCHGerC9P7zun8BgeHfQw5huC1w2ia_JeLmzzebk1O88ZhbaIJeWfa1sUxgZ3v1_m5a93W9T48z55YbIN5Me0n2ffzT9_OPi8ury5WZ6eXC81LGhe1FMhIzQpqS1tiibWARmpTQMGAMEJqlEVTgxbEWqDAbY2c1lhTTY2RwE6y13vdbeuDmqYQFANGuJSyEIlY7YnG47XaDq7D4VZ5dOpvwA9rhUN0ujUKGFoEU_CqkgXWrLI6FSZNxQ3TlWZJ6-NUbaw702jTxwHbmej8pncbtfY3CoCXvKx2Cu8mhcH_HE2IqnNBpyFib_y4f3hFRSV36Jt_0Ifbm6g1pg5cb30qrHei6rQCUTIQlCdq-QCVVmPSdyfPWJfis4T3s4TERPM7rnEMQa2-fvl_9urHnH17wG4MtnETfDtG5_swB4s9qAcfwmDs_ZSBqJ3l76ahdpZXk-VT2qvDH7pPuvM4-wOqefsv</recordid><startdate>20241119</startdate><enddate>20241119</enddate><creator>C Cutiongco-de la Paz, Eva Maria</creator><creator>Nevado, Jr, Jose B</creator><creator>Paz-Pacheco, Elizabeth T</creator><creator>Jasul, Jr, Gabriel V</creator><creator>Aman, Aimee Yvonne Criselle L</creator><creator>Francisco, Mark David G</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8131-4639</orcidid></search><sort><creationdate>20241119</creationdate><title>Genomic variants associated with type 2 diabetes mellitus among Filipinos</title><author>C Cutiongco-de la Paz, Eva Maria ; Nevado, Jr, Jose B ; Paz-Pacheco, Elizabeth T ; Jasul, Jr, Gabriel V ; Aman, Aimee Yvonne Criselle L ; Francisco, Mark David G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c572t-b96a30b342f7f7a7ab61d9ce414310300ba94db1c60ff1215fba52bab2c2ee913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Biology and Life Sciences</topic><topic>Case-Control Studies</topic><topic>Complications and side effects</topic><topic>Creatinine</topic><topic>Development and progression</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetes Mellitus, Type 2 - genetics</topic><topic>Diabetes therapy</topic><topic>Diagnosis</topic><topic>Disease susceptibility</topic><topic>Energy metabolism</topic><topic>Ethylenediaminetetraacetic acid</topic><topic>Evaluation</topic><topic>Female</topic><topic>Gene Frequency</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic diversity</topic><topic>Genetic Predisposition to Disease</topic><topic>Genetic variability</topic><topic>Genetic variance</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotype</topic><topic>Genotyping</topic><topic>Glucose metabolism</topic><topic>Health risk assessment</topic><topic>Humans</topic><topic>Hyperglycemia</topic><topic>Male</topic><topic>Medical screening</topic><topic>Medicine and Health Sciences</topic><topic>Middle Aged</topic><topic>Mortality</topic><topic>Philippines</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Population</topic><topic>Population genetics</topic><topic>Prediction models</topic><topic>Quality control</topic><topic>Quality of life</topic><topic>Regression analysis</topic><topic>Risk factors</topic><topic>Risk levels</topic><topic>Type 2 diabetes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>C Cutiongco-de la Paz, Eva Maria</creatorcontrib><creatorcontrib>Nevado, Jr, Jose B</creatorcontrib><creatorcontrib>Paz-Pacheco, Elizabeth T</creatorcontrib><creatorcontrib>Jasul, Jr, Gabriel V</creatorcontrib><creatorcontrib>Aman, Aimee Yvonne Criselle L</creatorcontrib><creatorcontrib>Francisco, Mark David G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>C Cutiongco-de la Paz, Eva Maria</au><au>Nevado, Jr, Jose B</au><au>Paz-Pacheco, Elizabeth T</au><au>Jasul, Jr, Gabriel V</au><au>Aman, Aimee Yvonne Criselle L</au><au>Francisco, Mark David G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genomic variants associated with type 2 diabetes mellitus among Filipinos</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-11-19</date><risdate>2024</risdate><volume>19</volume><issue>11</issue><spage>e0312291</spage><pages>e0312291-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Type 2 diabetes mellitus leads to debilitating complications that affect the quality of life of many Filipinos. Genetic variability contributes to 30% to 70% of T2DM risk. Determining genomic variants related to type 2 diabetes mellitus susceptibility can lead to early detection to prevent complications. However, interethnic variability in risk and genetic susceptibility exists. This study aimed to identify variants associated with type 2 diabetes mellitus among Filipinos using a case-control design frequency matched for age and sex. A comparison was made between 66 unrelated Filipino adults with type 2 diabetes mellitus and 121 without. Genotyping was done using a candidate gene approach on genetic variants of type 2 diabetes mellitus and its complications involving allelic association and genotypic association studies with correction for multiple testing. Nine (9) significant variants, mostly involved in glucose and energy metabolism, associated with type 2 diabetes mellitus in Filipinos were found. Notably, a CDKAL1 variant (rs7766070) confers the highest level of risk while rs7119 (HMG20A) and rs708272 (CETP) have high risk allele frequencies in this population at 0.77 and 0.66, respectively, making them potentially good markers for type 2 diabetes mellitus screening. The data generated can be valuable in developing genetic risk prediction models for type 2 diabetes mellitus to diagnose and prevent the condition among Filipinos.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>39561140</pmid><doi>10.1371/journal.pone.0312291</doi><tpages>e0312291</tpages><orcidid>https://orcid.org/0000-0002-8131-4639</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2024-11, Vol.19 (11), p.e0312291
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_3130599946
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Adult
Aged
Biology and Life Sciences
Case-Control Studies
Complications and side effects
Creatinine
Development and progression
Diabetes
Diabetes mellitus
Diabetes mellitus (non-insulin dependent)
Diabetes Mellitus, Type 2 - genetics
Diabetes therapy
Diagnosis
Disease susceptibility
Energy metabolism
Ethylenediaminetetraacetic acid
Evaluation
Female
Gene Frequency
Genes
Genetic aspects
Genetic diversity
Genetic Predisposition to Disease
Genetic variability
Genetic variance
Genomes
Genomics
Genotype
Genotyping
Glucose metabolism
Health risk assessment
Humans
Hyperglycemia
Male
Medical screening
Medicine and Health Sciences
Middle Aged
Mortality
Philippines
Polymorphism, Single Nucleotide
Population
Population genetics
Prediction models
Quality control
Quality of life
Regression analysis
Risk factors
Risk levels
Type 2 diabetes
title Genomic variants associated with type 2 diabetes mellitus among Filipinos
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T21%3A26%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genomic%20variants%20associated%20with%20type%202%20diabetes%20mellitus%20among%20Filipinos&rft.jtitle=PloS%20one&rft.au=C%20Cutiongco-de%20la%20Paz,%20Eva%20Maria&rft.date=2024-11-19&rft.volume=19&rft.issue=11&rft.spage=e0312291&rft.pages=e0312291-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0312291&rft_dat=%3Cgale_plos_%3EA816731625%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3130599946&rft_id=info:pmid/39561140&rft_galeid=A816731625&rft_doaj_id=oai_doaj_org_article_13afa1e458894ab38fcc600d85e3c8c3&rfr_iscdi=true