Predicting goal probabilities with improved xG models using event sequences in association football
In association football, predicting the likelihood and outcome of a shot at a goal is useful but challenging. Expected goal (xG) models can be used in a variety of ways including evaluating performance and designing offensive strategies. This study proposed a novel framework that uses the events pre...
Gespeichert in:
Veröffentlicht in: | PloS one 2024-10, Vol.19 (10), p.e0312278 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | e0312278 |
container_title | PloS one |
container_volume | 19 |
creator | Bandara, Ishara Shelyag, Sergiy Rajasegarar, Sutharshan Dwyer, Dan Kim, Eun-Jin Angelova, Maia |
description | In association football, predicting the likelihood and outcome of a shot at a goal is useful but challenging. Expected goal (xG) models can be used in a variety of ways including evaluating performance and designing offensive strategies. This study proposed a novel framework that uses the events preceding a shot, to improve the accuracy of the expected goals (xG) metric. A combination of previously explored and unexplored temporal features is utilized in the proposed framework. The new features include; "advancement factor", and "player position column". A random forest model was used, which performed better than published single-event-based models in the literature. Results further demonstrated a significant improvement in model performance with the inclusion of preceding event information. The proposed framework and model enable the discovery of event sequences that improve xG, which include; opportunities built up from the sides of the 18-yard box, shots attempted from in front of the goal within the opposition's 18-yard box, and shots from successful passes to the far post. |
doi_str_mv | 10.1371/journal.pone.0312278 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3122530353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A814242085</galeid><sourcerecordid>A814242085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-f129da9d938ca19bd03e2a7ddbccd9e002df3ff9108974957c69243fdd6ada5b3</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhgdRbK3-A9EBQfRi13zMV66kFK2FQsWv25BJTmZTMsl2klnrvzfDTsuO9EISSEie95yTkzfLXmK0xrTGH679ODhh11vvYI0oJqRuHmXHmFGyqgiijw_2R9mzEK4RKmlTVU-zI8qKumR1fZzJrwMoI6NxXd55YfPt4FvRGmuigZD_NnGTmz4d7kDlt-d57xXYkI9hEsAOXMwD3IzgZKKNy0UIXhoRjXe59j62wtrn2RMtbIAX83qS_fz86cfZl9Xl1fnF2enlShYViiuNCVOCKUYbKTBrFaJARK1UK6VigBBRmmrNMGpYXbCylhUjBdVKVUKJsqUn2et93K31gc_9CXxqTUkRLWkiPs7E2PagZCp_EJZvB9OL4Q_3wvDljTMb3vkdx7gkRZopwrs5wuDTs0PkvQkSrBUO_LhPVqVUZZXQN_-gD5c0U52wwI3TPiWWU1B-2uCCFAQ1ZaLWD1BpKOiNTA7QJp0vBO8XgsREuI2dGEPgF9-__T979WvJvj1gNyBs3ARvx-nDwxIs9qAcfAgD6PsuY8QnA991g08G5rOBk-zV4Q_di-4cS_8CnvHtGw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3122530353</pqid></control><display><type>article</type><title>Predicting goal probabilities with improved xG models using event sequences in association football</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Bandara, Ishara ; Shelyag, Sergiy ; Rajasegarar, Sutharshan ; Dwyer, Dan ; Kim, Eun-Jin ; Angelova, Maia</creator><contributor>Vattay, Gábor</contributor><creatorcontrib>Bandara, Ishara ; Shelyag, Sergiy ; Rajasegarar, Sutharshan ; Dwyer, Dan ; Kim, Eun-Jin ; Angelova, Maia ; Vattay, Gábor</creatorcontrib><description>In association football, predicting the likelihood and outcome of a shot at a goal is useful but challenging. Expected goal (xG) models can be used in a variety of ways including evaluating performance and designing offensive strategies. This study proposed a novel framework that uses the events preceding a shot, to improve the accuracy of the expected goals (xG) metric. A combination of previously explored and unexplored temporal features is utilized in the proposed framework. The new features include; "advancement factor", and "player position column". A random forest model was used, which performed better than published single-event-based models in the literature. Results further demonstrated a significant improvement in model performance with the inclusion of preceding event information. The proposed framework and model enable the discovery of event sequences that improve xG, which include; opportunities built up from the sides of the 18-yard box, shots attempted from in front of the goal within the opposition's 18-yard box, and shots from successful passes to the far post.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0312278</identifier><identifier>PMID: 39475977</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Athletic Performance - physiology ; Biology and Life Sciences ; Computer and Information Sciences ; Engineering and Technology ; Goalkeeping ; Goals ; Humans ; Male ; Neural networks ; Offense ; Performance evaluation ; Physical Sciences ; Probability ; Science Policy ; Soccer ; Social Sciences ; Taiwan ; Temporal variations</subject><ispartof>PloS one, 2024-10, Vol.19 (10), p.e0312278</ispartof><rights>Copyright: © 2024 Bandara et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Bandara et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Bandara et al 2024 Bandara et al</rights><rights>2024 Bandara et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c460t-f129da9d938ca19bd03e2a7ddbccd9e002df3ff9108974957c69243fdd6ada5b3</cites><orcidid>0000-0002-0931-0916 ; 0000-0002-7346-248X ; 0000-0002-6436-9347 ; 0000-0002-8177-7262</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524524/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524524/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39475977$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Vattay, Gábor</contributor><creatorcontrib>Bandara, Ishara</creatorcontrib><creatorcontrib>Shelyag, Sergiy</creatorcontrib><creatorcontrib>Rajasegarar, Sutharshan</creatorcontrib><creatorcontrib>Dwyer, Dan</creatorcontrib><creatorcontrib>Kim, Eun-Jin</creatorcontrib><creatorcontrib>Angelova, Maia</creatorcontrib><title>Predicting goal probabilities with improved xG models using event sequences in association football</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In association football, predicting the likelihood and outcome of a shot at a goal is useful but challenging. Expected goal (xG) models can be used in a variety of ways including evaluating performance and designing offensive strategies. This study proposed a novel framework that uses the events preceding a shot, to improve the accuracy of the expected goals (xG) metric. A combination of previously explored and unexplored temporal features is utilized in the proposed framework. The new features include; "advancement factor", and "player position column". A random forest model was used, which performed better than published single-event-based models in the literature. Results further demonstrated a significant improvement in model performance with the inclusion of preceding event information. The proposed framework and model enable the discovery of event sequences that improve xG, which include; opportunities built up from the sides of the 18-yard box, shots attempted from in front of the goal within the opposition's 18-yard box, and shots from successful passes to the far post.</description><subject>Athletic Performance - physiology</subject><subject>Biology and Life Sciences</subject><subject>Computer and Information Sciences</subject><subject>Engineering and Technology</subject><subject>Goalkeeping</subject><subject>Goals</subject><subject>Humans</subject><subject>Male</subject><subject>Neural networks</subject><subject>Offense</subject><subject>Performance evaluation</subject><subject>Physical Sciences</subject><subject>Probability</subject><subject>Science Policy</subject><subject>Soccer</subject><subject>Social Sciences</subject><subject>Taiwan</subject><subject>Temporal variations</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkl1rFDEUhgdRbK3-A9EBQfRi13zMV66kFK2FQsWv25BJTmZTMsl2klnrvzfDTsuO9EISSEie95yTkzfLXmK0xrTGH679ODhh11vvYI0oJqRuHmXHmFGyqgiijw_2R9mzEK4RKmlTVU-zI8qKumR1fZzJrwMoI6NxXd55YfPt4FvRGmuigZD_NnGTmz4d7kDlt-d57xXYkI9hEsAOXMwD3IzgZKKNy0UIXhoRjXe59j62wtrn2RMtbIAX83qS_fz86cfZl9Xl1fnF2enlShYViiuNCVOCKUYbKTBrFaJARK1UK6VigBBRmmrNMGpYXbCylhUjBdVKVUKJsqUn2et93K31gc_9CXxqTUkRLWkiPs7E2PagZCp_EJZvB9OL4Q_3wvDljTMb3vkdx7gkRZopwrs5wuDTs0PkvQkSrBUO_LhPVqVUZZXQN_-gD5c0U52wwI3TPiWWU1B-2uCCFAQ1ZaLWD1BpKOiNTA7QJp0vBO8XgsREuI2dGEPgF9-__T979WvJvj1gNyBs3ARvx-nDwxIs9qAcfAgD6PsuY8QnA991g08G5rOBk-zV4Q_di-4cS_8CnvHtGw</recordid><startdate>20241030</startdate><enddate>20241030</enddate><creator>Bandara, Ishara</creator><creator>Shelyag, Sergiy</creator><creator>Rajasegarar, Sutharshan</creator><creator>Dwyer, Dan</creator><creator>Kim, Eun-Jin</creator><creator>Angelova, Maia</creator><general>Public Library of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0931-0916</orcidid><orcidid>https://orcid.org/0000-0002-7346-248X</orcidid><orcidid>https://orcid.org/0000-0002-6436-9347</orcidid><orcidid>https://orcid.org/0000-0002-8177-7262</orcidid></search><sort><creationdate>20241030</creationdate><title>Predicting goal probabilities with improved xG models using event sequences in association football</title><author>Bandara, Ishara ; Shelyag, Sergiy ; Rajasegarar, Sutharshan ; Dwyer, Dan ; Kim, Eun-Jin ; Angelova, Maia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-f129da9d938ca19bd03e2a7ddbccd9e002df3ff9108974957c69243fdd6ada5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Athletic Performance - physiology</topic><topic>Biology and Life Sciences</topic><topic>Computer and Information Sciences</topic><topic>Engineering and Technology</topic><topic>Goalkeeping</topic><topic>Goals</topic><topic>Humans</topic><topic>Male</topic><topic>Neural networks</topic><topic>Offense</topic><topic>Performance evaluation</topic><topic>Physical Sciences</topic><topic>Probability</topic><topic>Science Policy</topic><topic>Soccer</topic><topic>Social Sciences</topic><topic>Taiwan</topic><topic>Temporal variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bandara, Ishara</creatorcontrib><creatorcontrib>Shelyag, Sergiy</creatorcontrib><creatorcontrib>Rajasegarar, Sutharshan</creatorcontrib><creatorcontrib>Dwyer, Dan</creatorcontrib><creatorcontrib>Kim, Eun-Jin</creatorcontrib><creatorcontrib>Angelova, Maia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bandara, Ishara</au><au>Shelyag, Sergiy</au><au>Rajasegarar, Sutharshan</au><au>Dwyer, Dan</au><au>Kim, Eun-Jin</au><au>Angelova, Maia</au><au>Vattay, Gábor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting goal probabilities with improved xG models using event sequences in association football</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-10-30</date><risdate>2024</risdate><volume>19</volume><issue>10</issue><spage>e0312278</spage><pages>e0312278-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In association football, predicting the likelihood and outcome of a shot at a goal is useful but challenging. Expected goal (xG) models can be used in a variety of ways including evaluating performance and designing offensive strategies. This study proposed a novel framework that uses the events preceding a shot, to improve the accuracy of the expected goals (xG) metric. A combination of previously explored and unexplored temporal features is utilized in the proposed framework. The new features include; "advancement factor", and "player position column". A random forest model was used, which performed better than published single-event-based models in the literature. Results further demonstrated a significant improvement in model performance with the inclusion of preceding event information. The proposed framework and model enable the discovery of event sequences that improve xG, which include; opportunities built up from the sides of the 18-yard box, shots attempted from in front of the goal within the opposition's 18-yard box, and shots from successful passes to the far post.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>39475977</pmid><doi>10.1371/journal.pone.0312278</doi><tpages>e0312278</tpages><orcidid>https://orcid.org/0000-0002-0931-0916</orcidid><orcidid>https://orcid.org/0000-0002-7346-248X</orcidid><orcidid>https://orcid.org/0000-0002-6436-9347</orcidid><orcidid>https://orcid.org/0000-0002-8177-7262</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2024-10, Vol.19 (10), p.e0312278 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_3122530353 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Athletic Performance - physiology Biology and Life Sciences Computer and Information Sciences Engineering and Technology Goalkeeping Goals Humans Male Neural networks Offense Performance evaluation Physical Sciences Probability Science Policy Soccer Social Sciences Taiwan Temporal variations |
title | Predicting goal probabilities with improved xG models using event sequences in association football |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A36%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20goal%20probabilities%20with%20improved%20xG%20models%20using%20event%20sequences%20in%20association%20football&rft.jtitle=PloS%20one&rft.au=Bandara,%20Ishara&rft.date=2024-10-30&rft.volume=19&rft.issue=10&rft.spage=e0312278&rft.pages=e0312278-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0312278&rft_dat=%3Cgale_plos_%3EA814242085%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3122530353&rft_id=info:pmid/39475977&rft_galeid=A814242085&rfr_iscdi=true |