Deep learning innovations in South Korean maritime navigation: Enhancing vessel trajectories prediction with AIS data

Predicting ship trajectories can effectively forecast navigation trends and enable the orderly management of ships, which holds immense significance for maritime traffic safety. This paper introduces a novel ship trajectory prediction method utilizing Convolutional Neural Network (CNN), Deep Neural...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2024-10, Vol.19 (10), p.e0310385
Hauptverfasser: Zaman, Umar, Khan, Junaid, Lee, Eunkyu, Balobaid, Awatef Salim, Aburasain, R Y, Kim, Kyungsup
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page e0310385
container_title PloS one
container_volume 19
creator Zaman, Umar
Khan, Junaid
Lee, Eunkyu
Balobaid, Awatef Salim
Aburasain, R Y
Kim, Kyungsup
description Predicting ship trajectories can effectively forecast navigation trends and enable the orderly management of ships, which holds immense significance for maritime traffic safety. This paper introduces a novel ship trajectory prediction method utilizing Convolutional Neural Network (CNN), Deep Neural Network (DNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU). Our research comprises two main parts: the first involves preprocessing the large raw AIS dataset to extract features, and the second focuses on trajectory prediction. We emphasize a specialized preprocessing approach tailored for AIS data, including advanced filtering techniques to remove outliers and erroneous data points, and the incorporation of contextual information such as environmental conditions and ship-specific characteristics. Our deep learning models utilize trajectory data sourced from the Automatic Identification System (AIS) to train and learn regular patterns within ship trajectory data, enabling them to predict trajectories for the next hour. Experimental results reveal that CNN has substantially reduced the Mean Absolute Error (MAE) and Mean Square Error (MSE) of ship trajectory prediction, showcasing superior performance compared to other deep learning algorithms. Additionally, a comparative analysis with other models-Recurrent Neural Network (RNN), GRU, LSTM, and DBS-LSTM-using metrics such as Average Displacement Error (ADE), Final Displacement Error (FDE), and Non-Linear ADE (NL-ADE), demonstrates our method's robustness and accuracy. Our approach not only cleans the data but also enriches it, providing a robust foundation for subsequent deep learning applications in ship trajectory prediction. This improvement effectively enhances the accuracy of trajectory prediction, promising advancements in maritime traffic safety.
doi_str_mv 10.1371/journal.pone.0310385
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3120494589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A813480622</galeid><sourcerecordid>A813480622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-c6bc7de31c31efd77c669084a934de524d2ffce9244beffa706535732aa025463</originalsourceid><addsrcrecordid>eNqNklGPEyEUhSdG466r_8AoiYnRh1YYGGbGF9OsqzZusolVXwll7kxpKMwCU_XfS7ezm9bsg-EBAt85Fy4ny54TPCW0JO_WbvBWmmnvLEwxJZhWxYPslNQ0n_Ac04cH65PsSQhrjAtacf44O6E1Y7zi9DQbPgL0yID0VtsOaWvdVkbtbEhrtHBDXKGvzoO0aCO9jnoDyMqt7m6g9-jCrqRVO-kWQgCDopdrUNF5DQH1HhqtdiT6pZPTbL5AjYzyafaolSbAs3E-y358uvh-_mVyefV5fj67nCjGcZwovlRlA5QoSqBtylJxXuOKyZqyBoqcNXnbKqhzxpbQtrLEvKBFSXMpcV4wTs-yl3vf3rggxo4FQUmOWc2Kqk7Eh5EYlhtoFNj0ACN6r9Nz_wgntTg-sXolOrcVhBQY15wlhzejg3fXA4QoNjooMEZacMO-WFHTkpGEvvoHvf9KI9VJA0Lb1qXCamcqZhWhrMI8zxM1vYdKo4GNVikTrU77R4K3R4LERPgdOzmEIOaLb__PXv08Zl8fsCuQJq6CM8NNiI5BtgeVdyF4aO-6TLDYRfq2G2IXaTFGOsleHP7Qneg2w_QvSi7ygA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120494589</pqid></control><display><type>article</type><title>Deep learning innovations in South Korean maritime navigation: Enhancing vessel trajectories prediction with AIS data</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Zaman, Umar ; Khan, Junaid ; Lee, Eunkyu ; Balobaid, Awatef Salim ; Aburasain, R Y ; Kim, Kyungsup</creator><creatorcontrib>Zaman, Umar ; Khan, Junaid ; Lee, Eunkyu ; Balobaid, Awatef Salim ; Aburasain, R Y ; Kim, Kyungsup</creatorcontrib><description>Predicting ship trajectories can effectively forecast navigation trends and enable the orderly management of ships, which holds immense significance for maritime traffic safety. This paper introduces a novel ship trajectory prediction method utilizing Convolutional Neural Network (CNN), Deep Neural Network (DNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU). Our research comprises two main parts: the first involves preprocessing the large raw AIS dataset to extract features, and the second focuses on trajectory prediction. We emphasize a specialized preprocessing approach tailored for AIS data, including advanced filtering techniques to remove outliers and erroneous data points, and the incorporation of contextual information such as environmental conditions and ship-specific characteristics. Our deep learning models utilize trajectory data sourced from the Automatic Identification System (AIS) to train and learn regular patterns within ship trajectory data, enabling them to predict trajectories for the next hour. Experimental results reveal that CNN has substantially reduced the Mean Absolute Error (MAE) and Mean Square Error (MSE) of ship trajectory prediction, showcasing superior performance compared to other deep learning algorithms. Additionally, a comparative analysis with other models-Recurrent Neural Network (RNN), GRU, LSTM, and DBS-LSTM-using metrics such as Average Displacement Error (ADE), Final Displacement Error (FDE), and Non-Linear ADE (NL-ADE), demonstrates our method's robustness and accuracy. Our approach not only cleans the data but also enriches it, providing a robust foundation for subsequent deep learning applications in ship trajectory prediction. This improvement effectively enhances the accuracy of trajectory prediction, promising advancements in maritime traffic safety.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0310385</identifier><identifier>PMID: 39446863</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Algorithms ; Artificial intelligence ; Artificial neural networks ; Automatic identification systems ; Comparative analysis ; Computer and Information Sciences ; Data analysis ; Data mining ; Data points ; Datasets ; Deep Learning ; Earth Sciences ; Engineering and Technology ; Environmental conditions ; Error analysis ; Information processing ; International trade ; Long short-term memory ; Machine learning ; Navigation ; Neural networks ; Neural Networks, Computer ; Outliers (statistics) ; Performance evaluation ; Physical Sciences ; Predictions ; Preprocessing ; Privacy ; Recurrent neural networks ; Republic of Korea ; Research and Analysis Methods ; Route optimization ; Safety management ; Sea vessels ; Ship accidents &amp; safety ; Ships ; Traffic accidents &amp; safety</subject><ispartof>PloS one, 2024-10, Vol.19 (10), p.e0310385</ispartof><rights>Copyright: © 2024 Zaman et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Zaman et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Zaman et al 2024 Zaman et al</rights><rights>2024 Zaman et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c460t-c6bc7de31c31efd77c669084a934de524d2ffce9244beffa706535732aa025463</cites><orcidid>0000-0002-0166-1439 ; 0000-0002-2393-3132 ; 0009-0003-5786-8011</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500964/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500964/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39446863$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zaman, Umar</creatorcontrib><creatorcontrib>Khan, Junaid</creatorcontrib><creatorcontrib>Lee, Eunkyu</creatorcontrib><creatorcontrib>Balobaid, Awatef Salim</creatorcontrib><creatorcontrib>Aburasain, R Y</creatorcontrib><creatorcontrib>Kim, Kyungsup</creatorcontrib><title>Deep learning innovations in South Korean maritime navigation: Enhancing vessel trajectories prediction with AIS data</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Predicting ship trajectories can effectively forecast navigation trends and enable the orderly management of ships, which holds immense significance for maritime traffic safety. This paper introduces a novel ship trajectory prediction method utilizing Convolutional Neural Network (CNN), Deep Neural Network (DNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU). Our research comprises two main parts: the first involves preprocessing the large raw AIS dataset to extract features, and the second focuses on trajectory prediction. We emphasize a specialized preprocessing approach tailored for AIS data, including advanced filtering techniques to remove outliers and erroneous data points, and the incorporation of contextual information such as environmental conditions and ship-specific characteristics. Our deep learning models utilize trajectory data sourced from the Automatic Identification System (AIS) to train and learn regular patterns within ship trajectory data, enabling them to predict trajectories for the next hour. Experimental results reveal that CNN has substantially reduced the Mean Absolute Error (MAE) and Mean Square Error (MSE) of ship trajectory prediction, showcasing superior performance compared to other deep learning algorithms. Additionally, a comparative analysis with other models-Recurrent Neural Network (RNN), GRU, LSTM, and DBS-LSTM-using metrics such as Average Displacement Error (ADE), Final Displacement Error (FDE), and Non-Linear ADE (NL-ADE), demonstrates our method's robustness and accuracy. Our approach not only cleans the data but also enriches it, providing a robust foundation for subsequent deep learning applications in ship trajectory prediction. This improvement effectively enhances the accuracy of trajectory prediction, promising advancements in maritime traffic safety.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Automatic identification systems</subject><subject>Comparative analysis</subject><subject>Computer and Information Sciences</subject><subject>Data analysis</subject><subject>Data mining</subject><subject>Data points</subject><subject>Datasets</subject><subject>Deep Learning</subject><subject>Earth Sciences</subject><subject>Engineering and Technology</subject><subject>Environmental conditions</subject><subject>Error analysis</subject><subject>Information processing</subject><subject>International trade</subject><subject>Long short-term memory</subject><subject>Machine learning</subject><subject>Navigation</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Outliers (statistics)</subject><subject>Performance evaluation</subject><subject>Physical Sciences</subject><subject>Predictions</subject><subject>Preprocessing</subject><subject>Privacy</subject><subject>Recurrent neural networks</subject><subject>Republic of Korea</subject><subject>Research and Analysis Methods</subject><subject>Route optimization</subject><subject>Safety management</subject><subject>Sea vessels</subject><subject>Ship accidents &amp; safety</subject><subject>Ships</subject><subject>Traffic accidents &amp; safety</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNklGPEyEUhSdG466r_8AoiYnRh1YYGGbGF9OsqzZusolVXwll7kxpKMwCU_XfS7ezm9bsg-EBAt85Fy4ny54TPCW0JO_WbvBWmmnvLEwxJZhWxYPslNQ0n_Ac04cH65PsSQhrjAtacf44O6E1Y7zi9DQbPgL0yID0VtsOaWvdVkbtbEhrtHBDXKGvzoO0aCO9jnoDyMqt7m6g9-jCrqRVO-kWQgCDopdrUNF5DQH1HhqtdiT6pZPTbL5AjYzyafaolSbAs3E-y358uvh-_mVyefV5fj67nCjGcZwovlRlA5QoSqBtylJxXuOKyZqyBoqcNXnbKqhzxpbQtrLEvKBFSXMpcV4wTs-yl3vf3rggxo4FQUmOWc2Kqk7Eh5EYlhtoFNj0ACN6r9Nz_wgntTg-sXolOrcVhBQY15wlhzejg3fXA4QoNjooMEZacMO-WFHTkpGEvvoHvf9KI9VJA0Lb1qXCamcqZhWhrMI8zxM1vYdKo4GNVikTrU77R4K3R4LERPgdOzmEIOaLb__PXv08Zl8fsCuQJq6CM8NNiI5BtgeVdyF4aO-6TLDYRfq2G2IXaTFGOsleHP7Qneg2w_QvSi7ygA</recordid><startdate>20241024</startdate><enddate>20241024</enddate><creator>Zaman, Umar</creator><creator>Khan, Junaid</creator><creator>Lee, Eunkyu</creator><creator>Balobaid, Awatef Salim</creator><creator>Aburasain, R Y</creator><creator>Kim, Kyungsup</creator><general>Public Library of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0166-1439</orcidid><orcidid>https://orcid.org/0000-0002-2393-3132</orcidid><orcidid>https://orcid.org/0009-0003-5786-8011</orcidid></search><sort><creationdate>20241024</creationdate><title>Deep learning innovations in South Korean maritime navigation: Enhancing vessel trajectories prediction with AIS data</title><author>Zaman, Umar ; Khan, Junaid ; Lee, Eunkyu ; Balobaid, Awatef Salim ; Aburasain, R Y ; Kim, Kyungsup</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-c6bc7de31c31efd77c669084a934de524d2ffce9244beffa706535732aa025463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Automatic identification systems</topic><topic>Comparative analysis</topic><topic>Computer and Information Sciences</topic><topic>Data analysis</topic><topic>Data mining</topic><topic>Data points</topic><topic>Datasets</topic><topic>Deep Learning</topic><topic>Earth Sciences</topic><topic>Engineering and Technology</topic><topic>Environmental conditions</topic><topic>Error analysis</topic><topic>Information processing</topic><topic>International trade</topic><topic>Long short-term memory</topic><topic>Machine learning</topic><topic>Navigation</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Outliers (statistics)</topic><topic>Performance evaluation</topic><topic>Physical Sciences</topic><topic>Predictions</topic><topic>Preprocessing</topic><topic>Privacy</topic><topic>Recurrent neural networks</topic><topic>Republic of Korea</topic><topic>Research and Analysis Methods</topic><topic>Route optimization</topic><topic>Safety management</topic><topic>Sea vessels</topic><topic>Ship accidents &amp; safety</topic><topic>Ships</topic><topic>Traffic accidents &amp; safety</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaman, Umar</creatorcontrib><creatorcontrib>Khan, Junaid</creatorcontrib><creatorcontrib>Lee, Eunkyu</creatorcontrib><creatorcontrib>Balobaid, Awatef Salim</creatorcontrib><creatorcontrib>Aburasain, R Y</creatorcontrib><creatorcontrib>Kim, Kyungsup</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaman, Umar</au><au>Khan, Junaid</au><au>Lee, Eunkyu</au><au>Balobaid, Awatef Salim</au><au>Aburasain, R Y</au><au>Kim, Kyungsup</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning innovations in South Korean maritime navigation: Enhancing vessel trajectories prediction with AIS data</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-10-24</date><risdate>2024</risdate><volume>19</volume><issue>10</issue><spage>e0310385</spage><pages>e0310385-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Predicting ship trajectories can effectively forecast navigation trends and enable the orderly management of ships, which holds immense significance for maritime traffic safety. This paper introduces a novel ship trajectory prediction method utilizing Convolutional Neural Network (CNN), Deep Neural Network (DNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU). Our research comprises two main parts: the first involves preprocessing the large raw AIS dataset to extract features, and the second focuses on trajectory prediction. We emphasize a specialized preprocessing approach tailored for AIS data, including advanced filtering techniques to remove outliers and erroneous data points, and the incorporation of contextual information such as environmental conditions and ship-specific characteristics. Our deep learning models utilize trajectory data sourced from the Automatic Identification System (AIS) to train and learn regular patterns within ship trajectory data, enabling them to predict trajectories for the next hour. Experimental results reveal that CNN has substantially reduced the Mean Absolute Error (MAE) and Mean Square Error (MSE) of ship trajectory prediction, showcasing superior performance compared to other deep learning algorithms. Additionally, a comparative analysis with other models-Recurrent Neural Network (RNN), GRU, LSTM, and DBS-LSTM-using metrics such as Average Displacement Error (ADE), Final Displacement Error (FDE), and Non-Linear ADE (NL-ADE), demonstrates our method's robustness and accuracy. Our approach not only cleans the data but also enriches it, providing a robust foundation for subsequent deep learning applications in ship trajectory prediction. This improvement effectively enhances the accuracy of trajectory prediction, promising advancements in maritime traffic safety.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>39446863</pmid><doi>10.1371/journal.pone.0310385</doi><tpages>e0310385</tpages><orcidid>https://orcid.org/0000-0002-0166-1439</orcidid><orcidid>https://orcid.org/0000-0002-2393-3132</orcidid><orcidid>https://orcid.org/0009-0003-5786-8011</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2024-10, Vol.19 (10), p.e0310385
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_3120494589
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Accuracy
Algorithms
Artificial intelligence
Artificial neural networks
Automatic identification systems
Comparative analysis
Computer and Information Sciences
Data analysis
Data mining
Data points
Datasets
Deep Learning
Earth Sciences
Engineering and Technology
Environmental conditions
Error analysis
Information processing
International trade
Long short-term memory
Machine learning
Navigation
Neural networks
Neural Networks, Computer
Outliers (statistics)
Performance evaluation
Physical Sciences
Predictions
Preprocessing
Privacy
Recurrent neural networks
Republic of Korea
Research and Analysis Methods
Route optimization
Safety management
Sea vessels
Ship accidents & safety
Ships
Traffic accidents & safety
title Deep learning innovations in South Korean maritime navigation: Enhancing vessel trajectories prediction with AIS data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A42%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20innovations%20in%20South%20Korean%20maritime%20navigation:%20Enhancing%20vessel%20trajectories%20prediction%20with%20AIS%20data&rft.jtitle=PloS%20one&rft.au=Zaman,%20Umar&rft.date=2024-10-24&rft.volume=19&rft.issue=10&rft.spage=e0310385&rft.pages=e0310385-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0310385&rft_dat=%3Cgale_plos_%3EA813480622%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3120494589&rft_id=info:pmid/39446863&rft_galeid=A813480622&rfr_iscdi=true