Development and validation of a cardiovascular risk prediction model for Sri Lankans using machine learning

Sri Lankans do not have a specific cardiovascular (CV) risk prediction model and therefore, World Health Organization(WHO) risk charts developed for the Southeast Asia Region are being used. We aimed to develop a CV risk prediction model specific for Sri Lankans using machine learning (ML) of data o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2024-10, Vol.19 (10), p.e0309843
Hauptverfasser: Mettananda, Chamila, Sanjeewa, Isuru, Benthota Arachchi, Tinul, Wijesooriya, Avishka, Chandrasena, Chiranjaya, Weerasinghe, Tolani, Solangaarachchige, Maheeka, Ranasinghe, Achila, Elpitiya, Isuru, Sammandapperuma, Rashmi, Kurukulasooriya, Sujeewani, Ranawaka, Udaya, Pathmeswaran, Arunasalam, Kasturiratne, Anuradhini, Kato, Nei, Wickramasinghe, Rajitha, Haddela, Prasanna, de Silva, Janaka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page e0309843
container_title PloS one
container_volume 19
creator Mettananda, Chamila
Sanjeewa, Isuru
Benthota Arachchi, Tinul
Wijesooriya, Avishka
Chandrasena, Chiranjaya
Weerasinghe, Tolani
Solangaarachchige, Maheeka
Ranasinghe, Achila
Elpitiya, Isuru
Sammandapperuma, Rashmi
Kurukulasooriya, Sujeewani
Ranawaka, Udaya
Pathmeswaran, Arunasalam
Kasturiratne, Anuradhini
Kato, Nei
Wickramasinghe, Rajitha
Haddela, Prasanna
de Silva, Janaka
description Sri Lankans do not have a specific cardiovascular (CV) risk prediction model and therefore, World Health Organization(WHO) risk charts developed for the Southeast Asia Region are being used. We aimed to develop a CV risk prediction model specific for Sri Lankans using machine learning (ML) of data of a population-based, randomly selected cohort of Sri Lankans followed up for 10 years and to validate it in an external cohort. The cohort consisted of 2596 individuals between 40-65 years of age in 2007, who were followed up for 10 years. Of them, 179 developed hard CV diseases (CVD) by 2017. We developed three CV risk prediction models named model 1, 2 and 3 using ML. We compared predictive performances between models and the WHO risk charts using receiver operating characteristic curves (ROC). The most predictive and practical model for use in primary care, model 3 was named "SLCVD score" which used age, sex, smoking status, systolic blood pressure, history of diabetes, and total cholesterol level in the calculation. We developed an online platform to calculate the SLCVD score. Predictions of SLCVD score were validated in an external hospital-based cohort. Model 1, 2, SLCVD score and the WHO risk charts predicted 173, 162, 169 and 10 of 179 observed events and the area under the ROC (AUC) were 0.98, 0.98, 0.98 and 0.52 respectively. During external validation, the SLCVD score and WHO risk charts predicted 56 and 18 respectively of 119 total events and AUCs were 0.64 and 0.54 respectively. SLCVD score is the first and only CV risk prediction model specific for Sri Lankans. It predicts the 10-year risk of developing a hard CVD in Sri Lankans. SLCVD score was more effective in predicting Sri Lankans at high CV risk than WHO risk charts.
doi_str_mv 10.1371/journal.pone.0309843
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3119603220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A813222243</galeid><sourcerecordid>A813222243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-ae7e39317c505f6b16ffdc68874ba09680351aa284e1315d46a481dca1334cf83</originalsourceid><addsrcrecordid>eNqNklFv0zAUhSMEYqPwDxBYQkLw0GLHjuM8oWmwManSJAa8WreO03p17GAnFfx7XJpNDdoD8oMt-7vn2scny14SvCC0JB9u_RAc2EXnnV5giivB6KPslFQ0n_Mc08dH65PsWYy3GBdUcP40O6EVo1xU-Wm2_aR32vqu1a5H4Gq0A2tq6I13yDcIkIJQG7-DqAYLAQUTt6gLujbqL9P6WlvU-IBugkFLcFtwEQ3RuDVqQW2M08hqCC5tPM-eNGCjfjHOs-z7xedv51_my-vLq_Oz5Vwxjvs56FLTipJSFbho-IrwpqkVF6JkK8AVF5gWBCAXTBNKippxYILUCgilTDWCzrLXB93O-ihHn6KkhFQc0zz5Mcs-jsSwanWt0uMDWNkF00L4LT0YOT1xZiPXficJYVVRlDwpvBsVgv856NjL1kSlrQWn_XBoVuakEkVC3_yDPnylkVqD1dK4xqfGai8qzwRJSJ4zmqjFA1QatW6NSkloTNqfFLyfFCSm17_6NQwxyqubr__PXv-Ysm-P2I0G22-it8M-FHEKsgOogo8x6ObeZYLlPsh3bsh9kOUY5FT26viH7ovukkv_APnY7gk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119603220</pqid></control><display><type>article</type><title>Development and validation of a cardiovascular risk prediction model for Sri Lankans using machine learning</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Mettananda, Chamila ; Sanjeewa, Isuru ; Benthota Arachchi, Tinul ; Wijesooriya, Avishka ; Chandrasena, Chiranjaya ; Weerasinghe, Tolani ; Solangaarachchige, Maheeka ; Ranasinghe, Achila ; Elpitiya, Isuru ; Sammandapperuma, Rashmi ; Kurukulasooriya, Sujeewani ; Ranawaka, Udaya ; Pathmeswaran, Arunasalam ; Kasturiratne, Anuradhini ; Kato, Nei ; Wickramasinghe, Rajitha ; Haddela, Prasanna ; de Silva, Janaka</creator><creatorcontrib>Mettananda, Chamila ; Sanjeewa, Isuru ; Benthota Arachchi, Tinul ; Wijesooriya, Avishka ; Chandrasena, Chiranjaya ; Weerasinghe, Tolani ; Solangaarachchige, Maheeka ; Ranasinghe, Achila ; Elpitiya, Isuru ; Sammandapperuma, Rashmi ; Kurukulasooriya, Sujeewani ; Ranawaka, Udaya ; Pathmeswaran, Arunasalam ; Kasturiratne, Anuradhini ; Kato, Nei ; Wickramasinghe, Rajitha ; Haddela, Prasanna ; de Silva, Janaka</creatorcontrib><description>Sri Lankans do not have a specific cardiovascular (CV) risk prediction model and therefore, World Health Organization(WHO) risk charts developed for the Southeast Asia Region are being used. We aimed to develop a CV risk prediction model specific for Sri Lankans using machine learning (ML) of data of a population-based, randomly selected cohort of Sri Lankans followed up for 10 years and to validate it in an external cohort. The cohort consisted of 2596 individuals between 40-65 years of age in 2007, who were followed up for 10 years. Of them, 179 developed hard CV diseases (CVD) by 2017. We developed three CV risk prediction models named model 1, 2 and 3 using ML. We compared predictive performances between models and the WHO risk charts using receiver operating characteristic curves (ROC). The most predictive and practical model for use in primary care, model 3 was named "SLCVD score" which used age, sex, smoking status, systolic blood pressure, history of diabetes, and total cholesterol level in the calculation. We developed an online platform to calculate the SLCVD score. Predictions of SLCVD score were validated in an external hospital-based cohort. Model 1, 2, SLCVD score and the WHO risk charts predicted 173, 162, 169 and 10 of 179 observed events and the area under the ROC (AUC) were 0.98, 0.98, 0.98 and 0.52 respectively. During external validation, the SLCVD score and WHO risk charts predicted 56 and 18 respectively of 119 total events and AUCs were 0.64 and 0.54 respectively. SLCVD score is the first and only CV risk prediction model specific for Sri Lankans. It predicts the 10-year risk of developing a hard CVD in Sri Lankans. SLCVD score was more effective in predicting Sri Lankans at high CV risk than WHO risk charts.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0309843</identifier><identifier>PMID: 39436892</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Adult ; Aged ; Biology and Life Sciences ; Blood cholesterol ; Blood pressure ; Cardiovascular diseases ; Cardiovascular Diseases - epidemiology ; Charts ; Cholesterol ; Cohort Studies ; Computer and Information Sciences ; Datasets ; Diabetes mellitus ; Epidemiology ; Ethics ; Examinations ; External pressure ; Female ; Health risks ; Heart Disease Risk Factors ; Hospitals ; Humans ; Learning algorithms ; Machine Learning ; Male ; Medicine and Health Sciences ; Metabolism ; Methods ; Middle Aged ; People and places ; Performance prediction ; Physical Sciences ; Prediction models ; Prevention ; Primary care ; Research and Analysis Methods ; Risk ; Risk Assessment - methods ; Risk Factors ; ROC Curve ; Sri Lanka - epidemiology ; Testing ; Validity</subject><ispartof>PloS one, 2024-10, Vol.19 (10), p.e0309843</ispartof><rights>Copyright: © 2024 Mettananda et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Mettananda et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Mettananda et al 2024 Mettananda et al</rights><rights>2024 Mettananda et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c460t-ae7e39317c505f6b16ffdc68874ba09680351aa284e1315d46a481dca1334cf83</cites><orcidid>0000-0001-8765-9366 ; 0000-0002-3328-1553 ; 0000-0002-4050-062X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495576/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495576/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39436892$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mettananda, Chamila</creatorcontrib><creatorcontrib>Sanjeewa, Isuru</creatorcontrib><creatorcontrib>Benthota Arachchi, Tinul</creatorcontrib><creatorcontrib>Wijesooriya, Avishka</creatorcontrib><creatorcontrib>Chandrasena, Chiranjaya</creatorcontrib><creatorcontrib>Weerasinghe, Tolani</creatorcontrib><creatorcontrib>Solangaarachchige, Maheeka</creatorcontrib><creatorcontrib>Ranasinghe, Achila</creatorcontrib><creatorcontrib>Elpitiya, Isuru</creatorcontrib><creatorcontrib>Sammandapperuma, Rashmi</creatorcontrib><creatorcontrib>Kurukulasooriya, Sujeewani</creatorcontrib><creatorcontrib>Ranawaka, Udaya</creatorcontrib><creatorcontrib>Pathmeswaran, Arunasalam</creatorcontrib><creatorcontrib>Kasturiratne, Anuradhini</creatorcontrib><creatorcontrib>Kato, Nei</creatorcontrib><creatorcontrib>Wickramasinghe, Rajitha</creatorcontrib><creatorcontrib>Haddela, Prasanna</creatorcontrib><creatorcontrib>de Silva, Janaka</creatorcontrib><title>Development and validation of a cardiovascular risk prediction model for Sri Lankans using machine learning</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Sri Lankans do not have a specific cardiovascular (CV) risk prediction model and therefore, World Health Organization(WHO) risk charts developed for the Southeast Asia Region are being used. We aimed to develop a CV risk prediction model specific for Sri Lankans using machine learning (ML) of data of a population-based, randomly selected cohort of Sri Lankans followed up for 10 years and to validate it in an external cohort. The cohort consisted of 2596 individuals between 40-65 years of age in 2007, who were followed up for 10 years. Of them, 179 developed hard CV diseases (CVD) by 2017. We developed three CV risk prediction models named model 1, 2 and 3 using ML. We compared predictive performances between models and the WHO risk charts using receiver operating characteristic curves (ROC). The most predictive and practical model for use in primary care, model 3 was named "SLCVD score" which used age, sex, smoking status, systolic blood pressure, history of diabetes, and total cholesterol level in the calculation. We developed an online platform to calculate the SLCVD score. Predictions of SLCVD score were validated in an external hospital-based cohort. Model 1, 2, SLCVD score and the WHO risk charts predicted 173, 162, 169 and 10 of 179 observed events and the area under the ROC (AUC) were 0.98, 0.98, 0.98 and 0.52 respectively. During external validation, the SLCVD score and WHO risk charts predicted 56 and 18 respectively of 119 total events and AUCs were 0.64 and 0.54 respectively. SLCVD score is the first and only CV risk prediction model specific for Sri Lankans. It predicts the 10-year risk of developing a hard CVD in Sri Lankans. SLCVD score was more effective in predicting Sri Lankans at high CV risk than WHO risk charts.</description><subject>Accuracy</subject><subject>Adult</subject><subject>Aged</subject><subject>Biology and Life Sciences</subject><subject>Blood cholesterol</subject><subject>Blood pressure</subject><subject>Cardiovascular diseases</subject><subject>Cardiovascular Diseases - epidemiology</subject><subject>Charts</subject><subject>Cholesterol</subject><subject>Cohort Studies</subject><subject>Computer and Information Sciences</subject><subject>Datasets</subject><subject>Diabetes mellitus</subject><subject>Epidemiology</subject><subject>Ethics</subject><subject>Examinations</subject><subject>External pressure</subject><subject>Female</subject><subject>Health risks</subject><subject>Heart Disease Risk Factors</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Medicine and Health Sciences</subject><subject>Metabolism</subject><subject>Methods</subject><subject>Middle Aged</subject><subject>People and places</subject><subject>Performance prediction</subject><subject>Physical Sciences</subject><subject>Prediction models</subject><subject>Prevention</subject><subject>Primary care</subject><subject>Research and Analysis Methods</subject><subject>Risk</subject><subject>Risk Assessment - methods</subject><subject>Risk Factors</subject><subject>ROC Curve</subject><subject>Sri Lanka - epidemiology</subject><subject>Testing</subject><subject>Validity</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNklFv0zAUhSMEYqPwDxBYQkLw0GLHjuM8oWmwManSJAa8WreO03p17GAnFfx7XJpNDdoD8oMt-7vn2scny14SvCC0JB9u_RAc2EXnnV5giivB6KPslFQ0n_Mc08dH65PsWYy3GBdUcP40O6EVo1xU-Wm2_aR32vqu1a5H4Gq0A2tq6I13yDcIkIJQG7-DqAYLAQUTt6gLujbqL9P6WlvU-IBugkFLcFtwEQ3RuDVqQW2M08hqCC5tPM-eNGCjfjHOs-z7xedv51_my-vLq_Oz5Vwxjvs56FLTipJSFbho-IrwpqkVF6JkK8AVF5gWBCAXTBNKippxYILUCgilTDWCzrLXB93O-ihHn6KkhFQc0zz5Mcs-jsSwanWt0uMDWNkF00L4LT0YOT1xZiPXficJYVVRlDwpvBsVgv856NjL1kSlrQWn_XBoVuakEkVC3_yDPnylkVqD1dK4xqfGai8qzwRJSJ4zmqjFA1QatW6NSkloTNqfFLyfFCSm17_6NQwxyqubr__PXv-Ysm-P2I0G22-it8M-FHEKsgOogo8x6ObeZYLlPsh3bsh9kOUY5FT26viH7ovukkv_APnY7gk</recordid><startdate>20241022</startdate><enddate>20241022</enddate><creator>Mettananda, Chamila</creator><creator>Sanjeewa, Isuru</creator><creator>Benthota Arachchi, Tinul</creator><creator>Wijesooriya, Avishka</creator><creator>Chandrasena, Chiranjaya</creator><creator>Weerasinghe, Tolani</creator><creator>Solangaarachchige, Maheeka</creator><creator>Ranasinghe, Achila</creator><creator>Elpitiya, Isuru</creator><creator>Sammandapperuma, Rashmi</creator><creator>Kurukulasooriya, Sujeewani</creator><creator>Ranawaka, Udaya</creator><creator>Pathmeswaran, Arunasalam</creator><creator>Kasturiratne, Anuradhini</creator><creator>Kato, Nei</creator><creator>Wickramasinghe, Rajitha</creator><creator>Haddela, Prasanna</creator><creator>de Silva, Janaka</creator><general>Public Library of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8765-9366</orcidid><orcidid>https://orcid.org/0000-0002-3328-1553</orcidid><orcidid>https://orcid.org/0000-0002-4050-062X</orcidid></search><sort><creationdate>20241022</creationdate><title>Development and validation of a cardiovascular risk prediction model for Sri Lankans using machine learning</title><author>Mettananda, Chamila ; Sanjeewa, Isuru ; Benthota Arachchi, Tinul ; Wijesooriya, Avishka ; Chandrasena, Chiranjaya ; Weerasinghe, Tolani ; Solangaarachchige, Maheeka ; Ranasinghe, Achila ; Elpitiya, Isuru ; Sammandapperuma, Rashmi ; Kurukulasooriya, Sujeewani ; Ranawaka, Udaya ; Pathmeswaran, Arunasalam ; Kasturiratne, Anuradhini ; Kato, Nei ; Wickramasinghe, Rajitha ; Haddela, Prasanna ; de Silva, Janaka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-ae7e39317c505f6b16ffdc68874ba09680351aa284e1315d46a481dca1334cf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Adult</topic><topic>Aged</topic><topic>Biology and Life Sciences</topic><topic>Blood cholesterol</topic><topic>Blood pressure</topic><topic>Cardiovascular diseases</topic><topic>Cardiovascular Diseases - epidemiology</topic><topic>Charts</topic><topic>Cholesterol</topic><topic>Cohort Studies</topic><topic>Computer and Information Sciences</topic><topic>Datasets</topic><topic>Diabetes mellitus</topic><topic>Epidemiology</topic><topic>Ethics</topic><topic>Examinations</topic><topic>External pressure</topic><topic>Female</topic><topic>Health risks</topic><topic>Heart Disease Risk Factors</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Medicine and Health Sciences</topic><topic>Metabolism</topic><topic>Methods</topic><topic>Middle Aged</topic><topic>People and places</topic><topic>Performance prediction</topic><topic>Physical Sciences</topic><topic>Prediction models</topic><topic>Prevention</topic><topic>Primary care</topic><topic>Research and Analysis Methods</topic><topic>Risk</topic><topic>Risk Assessment - methods</topic><topic>Risk Factors</topic><topic>ROC Curve</topic><topic>Sri Lanka - epidemiology</topic><topic>Testing</topic><topic>Validity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mettananda, Chamila</creatorcontrib><creatorcontrib>Sanjeewa, Isuru</creatorcontrib><creatorcontrib>Benthota Arachchi, Tinul</creatorcontrib><creatorcontrib>Wijesooriya, Avishka</creatorcontrib><creatorcontrib>Chandrasena, Chiranjaya</creatorcontrib><creatorcontrib>Weerasinghe, Tolani</creatorcontrib><creatorcontrib>Solangaarachchige, Maheeka</creatorcontrib><creatorcontrib>Ranasinghe, Achila</creatorcontrib><creatorcontrib>Elpitiya, Isuru</creatorcontrib><creatorcontrib>Sammandapperuma, Rashmi</creatorcontrib><creatorcontrib>Kurukulasooriya, Sujeewani</creatorcontrib><creatorcontrib>Ranawaka, Udaya</creatorcontrib><creatorcontrib>Pathmeswaran, Arunasalam</creatorcontrib><creatorcontrib>Kasturiratne, Anuradhini</creatorcontrib><creatorcontrib>Kato, Nei</creatorcontrib><creatorcontrib>Wickramasinghe, Rajitha</creatorcontrib><creatorcontrib>Haddela, Prasanna</creatorcontrib><creatorcontrib>de Silva, Janaka</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mettananda, Chamila</au><au>Sanjeewa, Isuru</au><au>Benthota Arachchi, Tinul</au><au>Wijesooriya, Avishka</au><au>Chandrasena, Chiranjaya</au><au>Weerasinghe, Tolani</au><au>Solangaarachchige, Maheeka</au><au>Ranasinghe, Achila</au><au>Elpitiya, Isuru</au><au>Sammandapperuma, Rashmi</au><au>Kurukulasooriya, Sujeewani</au><au>Ranawaka, Udaya</au><au>Pathmeswaran, Arunasalam</au><au>Kasturiratne, Anuradhini</au><au>Kato, Nei</au><au>Wickramasinghe, Rajitha</au><au>Haddela, Prasanna</au><au>de Silva, Janaka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and validation of a cardiovascular risk prediction model for Sri Lankans using machine learning</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-10-22</date><risdate>2024</risdate><volume>19</volume><issue>10</issue><spage>e0309843</spage><pages>e0309843-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Sri Lankans do not have a specific cardiovascular (CV) risk prediction model and therefore, World Health Organization(WHO) risk charts developed for the Southeast Asia Region are being used. We aimed to develop a CV risk prediction model specific for Sri Lankans using machine learning (ML) of data of a population-based, randomly selected cohort of Sri Lankans followed up for 10 years and to validate it in an external cohort. The cohort consisted of 2596 individuals between 40-65 years of age in 2007, who were followed up for 10 years. Of them, 179 developed hard CV diseases (CVD) by 2017. We developed three CV risk prediction models named model 1, 2 and 3 using ML. We compared predictive performances between models and the WHO risk charts using receiver operating characteristic curves (ROC). The most predictive and practical model for use in primary care, model 3 was named "SLCVD score" which used age, sex, smoking status, systolic blood pressure, history of diabetes, and total cholesterol level in the calculation. We developed an online platform to calculate the SLCVD score. Predictions of SLCVD score were validated in an external hospital-based cohort. Model 1, 2, SLCVD score and the WHO risk charts predicted 173, 162, 169 and 10 of 179 observed events and the area under the ROC (AUC) were 0.98, 0.98, 0.98 and 0.52 respectively. During external validation, the SLCVD score and WHO risk charts predicted 56 and 18 respectively of 119 total events and AUCs were 0.64 and 0.54 respectively. SLCVD score is the first and only CV risk prediction model specific for Sri Lankans. It predicts the 10-year risk of developing a hard CVD in Sri Lankans. SLCVD score was more effective in predicting Sri Lankans at high CV risk than WHO risk charts.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>39436892</pmid><doi>10.1371/journal.pone.0309843</doi><tpages>e0309843</tpages><orcidid>https://orcid.org/0000-0001-8765-9366</orcidid><orcidid>https://orcid.org/0000-0002-3328-1553</orcidid><orcidid>https://orcid.org/0000-0002-4050-062X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2024-10, Vol.19 (10), p.e0309843
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_3119603220
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Accuracy
Adult
Aged
Biology and Life Sciences
Blood cholesterol
Blood pressure
Cardiovascular diseases
Cardiovascular Diseases - epidemiology
Charts
Cholesterol
Cohort Studies
Computer and Information Sciences
Datasets
Diabetes mellitus
Epidemiology
Ethics
Examinations
External pressure
Female
Health risks
Heart Disease Risk Factors
Hospitals
Humans
Learning algorithms
Machine Learning
Male
Medicine and Health Sciences
Metabolism
Methods
Middle Aged
People and places
Performance prediction
Physical Sciences
Prediction models
Prevention
Primary care
Research and Analysis Methods
Risk
Risk Assessment - methods
Risk Factors
ROC Curve
Sri Lanka - epidemiology
Testing
Validity
title Development and validation of a cardiovascular risk prediction model for Sri Lankans using machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T14%3A11%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20validation%20of%20a%20cardiovascular%20risk%20prediction%20model%20for%20Sri%20Lankans%20using%20machine%20learning&rft.jtitle=PloS%20one&rft.au=Mettananda,%20Chamila&rft.date=2024-10-22&rft.volume=19&rft.issue=10&rft.spage=e0309843&rft.pages=e0309843-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0309843&rft_dat=%3Cgale_plos_%3EA813222243%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3119603220&rft_id=info:pmid/39436892&rft_galeid=A813222243&rfr_iscdi=true