A SURF and SVD-based robust zero-watermarking for medical image integrity

Medical image security is paramount in the digital era but remains a significant challenge. This paper introduces an innovative zero-watermarking methodology tailored for medical imaging, ensuring robust protection without compromising image quality. We utilize Sped-up Robust features for high-preci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2024-09, Vol.19 (9), p.e0307619
Hauptverfasser: Taj, Rizwan, Tao, Feng, Kanwal, Saima, Almogren, Ahmad, Rehman, Ateeq Ur
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page e0307619
container_title PloS one
container_volume 19
creator Taj, Rizwan
Tao, Feng
Kanwal, Saima
Almogren, Ahmad
Rehman, Ateeq Ur
description Medical image security is paramount in the digital era but remains a significant challenge. This paper introduces an innovative zero-watermarking methodology tailored for medical imaging, ensuring robust protection without compromising image quality. We utilize Sped-up Robust features for high-precision feature extraction and singular value decomposition (SVD) to embed watermarks into the frequency domain, preserving the original image's integrity. Our methodology uniquely encodes watermarks in a non-intrusive manner, leveraging the robustness of the extracted features and the resilience of the SVD approach. The embedded watermark is imperceptible, maintaining the diagnostic value of medical images. Extensive experiments under various attacks, including Gaussian noise, JPEG compression, and geometric distortions, demonstrate the methodology's superior performance. The results reveal exceptional robustness, with high Normalized Correlation (NC) and Peak Signal-to-noise ratio (PSNR) values, outperforming existing techniques. Specifically, under Gaussian noise and rotation attacks, the watermark retrieved from the encrypted domain maintained an NC value close to 1.00, signifying near-perfect resilience. Even under severe attacks such as 30% cropping, the methodology exhibited a significantly higher NC compared to current state-of-the-art methods.
doi_str_mv 10.1371/journal.pone.0307619
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3103840432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A808506400</galeid><sourcerecordid>A808506400</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-304d282aac87c8c8da43b4096106e3b95f65587d472e964ab0a88cc0c3f8aa4c3</originalsourceid><addsrcrecordid>eNqNklFv0zAQxy0EYlvhGyCIhITgIcWJHcd5QtVgUGnSpJXt1bo4TuqR2p3tMManx2XZ1KA9IEu2Zf_uf6f_HUKvMjzPSJl9vLKDM9DPt9aoOSa4ZFn1BB1mFclTlmPydO9-gI68v8K4IJyx5-iAVDmjVVkeouUiWV2cnyRgmmR1-TmtwasmcbYefEh-K2fTGwjKbcD90KZLWuuSjWq0hD7RG-hUok1QndPh9gV61kLv1cvxnKGLky_fj7-lp2dfl8eL01QWmIWUYNrkPAeQvJRc8gYoqSmuWIaZInVVtKwoeNnQMlcVo1Bj4FxKLEnLAagkM_TmTnfbWy9GF7wgGSacYkrySHwaiaGOxUplgoNebF2s2N0KC1pMf4xei87-FFkWjclLEhXejwrOXg_KB7HRXqq-B6Ps8DcZjemKuM3Q23_Qx0saqQ56JbRpbUwsd6JiwTGPzlC805o_QsXVqI2Wsc-tju-TgA-TgMgE9St0MHgvlqvz_2fPLqfsuz12raAPa2_7IWhr_BSkd6B01nun2geXMyx2Y3rvhtiNqRjHNIa93u_QQ9D9XJI_uVfgmw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103840432</pqid></control><display><type>article</type><title>A SURF and SVD-based robust zero-watermarking for medical image integrity</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Taj, Rizwan ; Tao, Feng ; Kanwal, Saima ; Almogren, Ahmad ; Rehman, Ateeq Ur</creator><contributor>Solak, Serdar</contributor><creatorcontrib>Taj, Rizwan ; Tao, Feng ; Kanwal, Saima ; Almogren, Ahmad ; Rehman, Ateeq Ur ; Solak, Serdar</creatorcontrib><description>Medical image security is paramount in the digital era but remains a significant challenge. This paper introduces an innovative zero-watermarking methodology tailored for medical imaging, ensuring robust protection without compromising image quality. We utilize Sped-up Robust features for high-precision feature extraction and singular value decomposition (SVD) to embed watermarks into the frequency domain, preserving the original image's integrity. Our methodology uniquely encodes watermarks in a non-intrusive manner, leveraging the robustness of the extracted features and the resilience of the SVD approach. The embedded watermark is imperceptible, maintaining the diagnostic value of medical images. Extensive experiments under various attacks, including Gaussian noise, JPEG compression, and geometric distortions, demonstrate the methodology's superior performance. The results reveal exceptional robustness, with high Normalized Correlation (NC) and Peak Signal-to-noise ratio (PSNR) values, outperforming existing techniques. Specifically, under Gaussian noise and rotation attacks, the watermark retrieved from the encrypted domain maintained an NC value close to 1.00, signifying near-perfect resilience. Even under severe attacks such as 30% cropping, the methodology exhibited a significantly higher NC compared to current state-of-the-art methods.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0307619</identifier><identifier>PMID: 39264977</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Authenticity ; Biology and Life Sciences ; Computer and Information Sciences ; Computer Security ; Data Compression - methods ; Data integrity ; Diagnostic imaging ; Diagnostic Imaging - methods ; Digital imaging ; Digital watermarks ; Electronic health records ; Evaluation ; Feature extraction ; Fourier transforms ; Humans ; Image compression ; Image Processing, Computer-Assisted - methods ; Image quality ; Integrity ; Intellectual property ; Intellectual property law ; Licensing, certification and accreditation ; Medical imaging ; Medical imaging equipment ; Medical innovations ; Methodology ; Methods ; Multimedia ; Physical Sciences ; Random noise ; Research and Analysis Methods ; Resilience ; Robustness ; Signal to noise ratio ; Singular value decomposition ; Watermarking ; Wavelet transforms</subject><ispartof>PloS one, 2024-09, Vol.19 (9), p.e0307619</ispartof><rights>Copyright: © 2024 Taj et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Taj et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Taj et al 2024 Taj et al</rights><rights>2024 Taj et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c506t-304d282aac87c8c8da43b4096106e3b95f65587d472e964ab0a88cc0c3f8aa4c3</cites><orcidid>0000-0003-1611-9017 ; 0000-0002-8253-9709</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392273/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392273/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39264977$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Solak, Serdar</contributor><creatorcontrib>Taj, Rizwan</creatorcontrib><creatorcontrib>Tao, Feng</creatorcontrib><creatorcontrib>Kanwal, Saima</creatorcontrib><creatorcontrib>Almogren, Ahmad</creatorcontrib><creatorcontrib>Rehman, Ateeq Ur</creatorcontrib><title>A SURF and SVD-based robust zero-watermarking for medical image integrity</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Medical image security is paramount in the digital era but remains a significant challenge. This paper introduces an innovative zero-watermarking methodology tailored for medical imaging, ensuring robust protection without compromising image quality. We utilize Sped-up Robust features for high-precision feature extraction and singular value decomposition (SVD) to embed watermarks into the frequency domain, preserving the original image's integrity. Our methodology uniquely encodes watermarks in a non-intrusive manner, leveraging the robustness of the extracted features and the resilience of the SVD approach. The embedded watermark is imperceptible, maintaining the diagnostic value of medical images. Extensive experiments under various attacks, including Gaussian noise, JPEG compression, and geometric distortions, demonstrate the methodology's superior performance. The results reveal exceptional robustness, with high Normalized Correlation (NC) and Peak Signal-to-noise ratio (PSNR) values, outperforming existing techniques. Specifically, under Gaussian noise and rotation attacks, the watermark retrieved from the encrypted domain maintained an NC value close to 1.00, signifying near-perfect resilience. Even under severe attacks such as 30% cropping, the methodology exhibited a significantly higher NC compared to current state-of-the-art methods.</description><subject>Algorithms</subject><subject>Authenticity</subject><subject>Biology and Life Sciences</subject><subject>Computer and Information Sciences</subject><subject>Computer Security</subject><subject>Data Compression - methods</subject><subject>Data integrity</subject><subject>Diagnostic imaging</subject><subject>Diagnostic Imaging - methods</subject><subject>Digital imaging</subject><subject>Digital watermarks</subject><subject>Electronic health records</subject><subject>Evaluation</subject><subject>Feature extraction</subject><subject>Fourier transforms</subject><subject>Humans</subject><subject>Image compression</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image quality</subject><subject>Integrity</subject><subject>Intellectual property</subject><subject>Intellectual property law</subject><subject>Licensing, certification and accreditation</subject><subject>Medical imaging</subject><subject>Medical imaging equipment</subject><subject>Medical innovations</subject><subject>Methodology</subject><subject>Methods</subject><subject>Multimedia</subject><subject>Physical Sciences</subject><subject>Random noise</subject><subject>Research and Analysis Methods</subject><subject>Resilience</subject><subject>Robustness</subject><subject>Signal to noise ratio</subject><subject>Singular value decomposition</subject><subject>Watermarking</subject><subject>Wavelet transforms</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNklFv0zAQxy0EYlvhGyCIhITgIcWJHcd5QtVgUGnSpJXt1bo4TuqR2p3tMManx2XZ1KA9IEu2Zf_uf6f_HUKvMjzPSJl9vLKDM9DPt9aoOSa4ZFn1BB1mFclTlmPydO9-gI68v8K4IJyx5-iAVDmjVVkeouUiWV2cnyRgmmR1-TmtwasmcbYefEh-K2fTGwjKbcD90KZLWuuSjWq0hD7RG-hUok1QndPh9gV61kLv1cvxnKGLky_fj7-lp2dfl8eL01QWmIWUYNrkPAeQvJRc8gYoqSmuWIaZInVVtKwoeNnQMlcVo1Bj4FxKLEnLAagkM_TmTnfbWy9GF7wgGSacYkrySHwaiaGOxUplgoNebF2s2N0KC1pMf4xei87-FFkWjclLEhXejwrOXg_KB7HRXqq-B6Ps8DcZjemKuM3Q23_Qx0saqQ56JbRpbUwsd6JiwTGPzlC805o_QsXVqI2Wsc-tju-TgA-TgMgE9St0MHgvlqvz_2fPLqfsuz12raAPa2_7IWhr_BSkd6B01nun2geXMyx2Y3rvhtiNqRjHNIa93u_QQ9D9XJI_uVfgmw</recordid><startdate>20240912</startdate><enddate>20240912</enddate><creator>Taj, Rizwan</creator><creator>Tao, Feng</creator><creator>Kanwal, Saima</creator><creator>Almogren, Ahmad</creator><creator>Rehman, Ateeq Ur</creator><general>Public Library of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1611-9017</orcidid><orcidid>https://orcid.org/0000-0002-8253-9709</orcidid></search><sort><creationdate>20240912</creationdate><title>A SURF and SVD-based robust zero-watermarking for medical image integrity</title><author>Taj, Rizwan ; Tao, Feng ; Kanwal, Saima ; Almogren, Ahmad ; Rehman, Ateeq Ur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-304d282aac87c8c8da43b4096106e3b95f65587d472e964ab0a88cc0c3f8aa4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Authenticity</topic><topic>Biology and Life Sciences</topic><topic>Computer and Information Sciences</topic><topic>Computer Security</topic><topic>Data Compression - methods</topic><topic>Data integrity</topic><topic>Diagnostic imaging</topic><topic>Diagnostic Imaging - methods</topic><topic>Digital imaging</topic><topic>Digital watermarks</topic><topic>Electronic health records</topic><topic>Evaluation</topic><topic>Feature extraction</topic><topic>Fourier transforms</topic><topic>Humans</topic><topic>Image compression</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image quality</topic><topic>Integrity</topic><topic>Intellectual property</topic><topic>Intellectual property law</topic><topic>Licensing, certification and accreditation</topic><topic>Medical imaging</topic><topic>Medical imaging equipment</topic><topic>Medical innovations</topic><topic>Methodology</topic><topic>Methods</topic><topic>Multimedia</topic><topic>Physical Sciences</topic><topic>Random noise</topic><topic>Research and Analysis Methods</topic><topic>Resilience</topic><topic>Robustness</topic><topic>Signal to noise ratio</topic><topic>Singular value decomposition</topic><topic>Watermarking</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taj, Rizwan</creatorcontrib><creatorcontrib>Tao, Feng</creatorcontrib><creatorcontrib>Kanwal, Saima</creatorcontrib><creatorcontrib>Almogren, Ahmad</creatorcontrib><creatorcontrib>Rehman, Ateeq Ur</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taj, Rizwan</au><au>Tao, Feng</au><au>Kanwal, Saima</au><au>Almogren, Ahmad</au><au>Rehman, Ateeq Ur</au><au>Solak, Serdar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A SURF and SVD-based robust zero-watermarking for medical image integrity</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-09-12</date><risdate>2024</risdate><volume>19</volume><issue>9</issue><spage>e0307619</spage><pages>e0307619-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Medical image security is paramount in the digital era but remains a significant challenge. This paper introduces an innovative zero-watermarking methodology tailored for medical imaging, ensuring robust protection without compromising image quality. We utilize Sped-up Robust features for high-precision feature extraction and singular value decomposition (SVD) to embed watermarks into the frequency domain, preserving the original image's integrity. Our methodology uniquely encodes watermarks in a non-intrusive manner, leveraging the robustness of the extracted features and the resilience of the SVD approach. The embedded watermark is imperceptible, maintaining the diagnostic value of medical images. Extensive experiments under various attacks, including Gaussian noise, JPEG compression, and geometric distortions, demonstrate the methodology's superior performance. The results reveal exceptional robustness, with high Normalized Correlation (NC) and Peak Signal-to-noise ratio (PSNR) values, outperforming existing techniques. Specifically, under Gaussian noise and rotation attacks, the watermark retrieved from the encrypted domain maintained an NC value close to 1.00, signifying near-perfect resilience. Even under severe attacks such as 30% cropping, the methodology exhibited a significantly higher NC compared to current state-of-the-art methods.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>39264977</pmid><doi>10.1371/journal.pone.0307619</doi><tpages>e0307619</tpages><orcidid>https://orcid.org/0000-0003-1611-9017</orcidid><orcidid>https://orcid.org/0000-0002-8253-9709</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2024-09, Vol.19 (9), p.e0307619
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_3103840432
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Authenticity
Biology and Life Sciences
Computer and Information Sciences
Computer Security
Data Compression - methods
Data integrity
Diagnostic imaging
Diagnostic Imaging - methods
Digital imaging
Digital watermarks
Electronic health records
Evaluation
Feature extraction
Fourier transforms
Humans
Image compression
Image Processing, Computer-Assisted - methods
Image quality
Integrity
Intellectual property
Intellectual property law
Licensing, certification and accreditation
Medical imaging
Medical imaging equipment
Medical innovations
Methodology
Methods
Multimedia
Physical Sciences
Random noise
Research and Analysis Methods
Resilience
Robustness
Signal to noise ratio
Singular value decomposition
Watermarking
Wavelet transforms
title A SURF and SVD-based robust zero-watermarking for medical image integrity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A35%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20SURF%20and%20SVD-based%20robust%20zero-watermarking%20for%20medical%20image%20integrity&rft.jtitle=PloS%20one&rft.au=Taj,%20Rizwan&rft.date=2024-09-12&rft.volume=19&rft.issue=9&rft.spage=e0307619&rft.pages=e0307619-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0307619&rft_dat=%3Cgale_plos_%3EA808506400%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3103840432&rft_id=info:pmid/39264977&rft_galeid=A808506400&rfr_iscdi=true