A SURF and SVD-based robust zero-watermarking for medical image integrity
Medical image security is paramount in the digital era but remains a significant challenge. This paper introduces an innovative zero-watermarking methodology tailored for medical imaging, ensuring robust protection without compromising image quality. We utilize Sped-up Robust features for high-preci...
Gespeichert in:
Veröffentlicht in: | PloS one 2024-09, Vol.19 (9), p.e0307619 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | e0307619 |
container_title | PloS one |
container_volume | 19 |
creator | Taj, Rizwan Tao, Feng Kanwal, Saima Almogren, Ahmad Rehman, Ateeq Ur |
description | Medical image security is paramount in the digital era but remains a significant challenge. This paper introduces an innovative zero-watermarking methodology tailored for medical imaging, ensuring robust protection without compromising image quality. We utilize Sped-up Robust features for high-precision feature extraction and singular value decomposition (SVD) to embed watermarks into the frequency domain, preserving the original image's integrity. Our methodology uniquely encodes watermarks in a non-intrusive manner, leveraging the robustness of the extracted features and the resilience of the SVD approach. The embedded watermark is imperceptible, maintaining the diagnostic value of medical images. Extensive experiments under various attacks, including Gaussian noise, JPEG compression, and geometric distortions, demonstrate the methodology's superior performance. The results reveal exceptional robustness, with high Normalized Correlation (NC) and Peak Signal-to-noise ratio (PSNR) values, outperforming existing techniques. Specifically, under Gaussian noise and rotation attacks, the watermark retrieved from the encrypted domain maintained an NC value close to 1.00, signifying near-perfect resilience. Even under severe attacks such as 30% cropping, the methodology exhibited a significantly higher NC compared to current state-of-the-art methods. |
doi_str_mv | 10.1371/journal.pone.0307619 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3103840432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A808506400</galeid><sourcerecordid>A808506400</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-304d282aac87c8c8da43b4096106e3b95f65587d472e964ab0a88cc0c3f8aa4c3</originalsourceid><addsrcrecordid>eNqNklFv0zAQxy0EYlvhGyCIhITgIcWJHcd5QtVgUGnSpJXt1bo4TuqR2p3tMManx2XZ1KA9IEu2Zf_uf6f_HUKvMjzPSJl9vLKDM9DPt9aoOSa4ZFn1BB1mFclTlmPydO9-gI68v8K4IJyx5-iAVDmjVVkeouUiWV2cnyRgmmR1-TmtwasmcbYefEh-K2fTGwjKbcD90KZLWuuSjWq0hD7RG-hUok1QndPh9gV61kLv1cvxnKGLky_fj7-lp2dfl8eL01QWmIWUYNrkPAeQvJRc8gYoqSmuWIaZInVVtKwoeNnQMlcVo1Bj4FxKLEnLAagkM_TmTnfbWy9GF7wgGSacYkrySHwaiaGOxUplgoNebF2s2N0KC1pMf4xei87-FFkWjclLEhXejwrOXg_KB7HRXqq-B6Ps8DcZjemKuM3Q23_Qx0saqQ56JbRpbUwsd6JiwTGPzlC805o_QsXVqI2Wsc-tju-TgA-TgMgE9St0MHgvlqvz_2fPLqfsuz12raAPa2_7IWhr_BSkd6B01nun2geXMyx2Y3rvhtiNqRjHNIa93u_QQ9D9XJI_uVfgmw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103840432</pqid></control><display><type>article</type><title>A SURF and SVD-based robust zero-watermarking for medical image integrity</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Taj, Rizwan ; Tao, Feng ; Kanwal, Saima ; Almogren, Ahmad ; Rehman, Ateeq Ur</creator><contributor>Solak, Serdar</contributor><creatorcontrib>Taj, Rizwan ; Tao, Feng ; Kanwal, Saima ; Almogren, Ahmad ; Rehman, Ateeq Ur ; Solak, Serdar</creatorcontrib><description>Medical image security is paramount in the digital era but remains a significant challenge. This paper introduces an innovative zero-watermarking methodology tailored for medical imaging, ensuring robust protection without compromising image quality. We utilize Sped-up Robust features for high-precision feature extraction and singular value decomposition (SVD) to embed watermarks into the frequency domain, preserving the original image's integrity. Our methodology uniquely encodes watermarks in a non-intrusive manner, leveraging the robustness of the extracted features and the resilience of the SVD approach. The embedded watermark is imperceptible, maintaining the diagnostic value of medical images. Extensive experiments under various attacks, including Gaussian noise, JPEG compression, and geometric distortions, demonstrate the methodology's superior performance. The results reveal exceptional robustness, with high Normalized Correlation (NC) and Peak Signal-to-noise ratio (PSNR) values, outperforming existing techniques. Specifically, under Gaussian noise and rotation attacks, the watermark retrieved from the encrypted domain maintained an NC value close to 1.00, signifying near-perfect resilience. Even under severe attacks such as 30% cropping, the methodology exhibited a significantly higher NC compared to current state-of-the-art methods.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0307619</identifier><identifier>PMID: 39264977</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Authenticity ; Biology and Life Sciences ; Computer and Information Sciences ; Computer Security ; Data Compression - methods ; Data integrity ; Diagnostic imaging ; Diagnostic Imaging - methods ; Digital imaging ; Digital watermarks ; Electronic health records ; Evaluation ; Feature extraction ; Fourier transforms ; Humans ; Image compression ; Image Processing, Computer-Assisted - methods ; Image quality ; Integrity ; Intellectual property ; Intellectual property law ; Licensing, certification and accreditation ; Medical imaging ; Medical imaging equipment ; Medical innovations ; Methodology ; Methods ; Multimedia ; Physical Sciences ; Random noise ; Research and Analysis Methods ; Resilience ; Robustness ; Signal to noise ratio ; Singular value decomposition ; Watermarking ; Wavelet transforms</subject><ispartof>PloS one, 2024-09, Vol.19 (9), p.e0307619</ispartof><rights>Copyright: © 2024 Taj et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Taj et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Taj et al 2024 Taj et al</rights><rights>2024 Taj et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c506t-304d282aac87c8c8da43b4096106e3b95f65587d472e964ab0a88cc0c3f8aa4c3</cites><orcidid>0000-0003-1611-9017 ; 0000-0002-8253-9709</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392273/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392273/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39264977$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Solak, Serdar</contributor><creatorcontrib>Taj, Rizwan</creatorcontrib><creatorcontrib>Tao, Feng</creatorcontrib><creatorcontrib>Kanwal, Saima</creatorcontrib><creatorcontrib>Almogren, Ahmad</creatorcontrib><creatorcontrib>Rehman, Ateeq Ur</creatorcontrib><title>A SURF and SVD-based robust zero-watermarking for medical image integrity</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Medical image security is paramount in the digital era but remains a significant challenge. This paper introduces an innovative zero-watermarking methodology tailored for medical imaging, ensuring robust protection without compromising image quality. We utilize Sped-up Robust features for high-precision feature extraction and singular value decomposition (SVD) to embed watermarks into the frequency domain, preserving the original image's integrity. Our methodology uniquely encodes watermarks in a non-intrusive manner, leveraging the robustness of the extracted features and the resilience of the SVD approach. The embedded watermark is imperceptible, maintaining the diagnostic value of medical images. Extensive experiments under various attacks, including Gaussian noise, JPEG compression, and geometric distortions, demonstrate the methodology's superior performance. The results reveal exceptional robustness, with high Normalized Correlation (NC) and Peak Signal-to-noise ratio (PSNR) values, outperforming existing techniques. Specifically, under Gaussian noise and rotation attacks, the watermark retrieved from the encrypted domain maintained an NC value close to 1.00, signifying near-perfect resilience. Even under severe attacks such as 30% cropping, the methodology exhibited a significantly higher NC compared to current state-of-the-art methods.</description><subject>Algorithms</subject><subject>Authenticity</subject><subject>Biology and Life Sciences</subject><subject>Computer and Information Sciences</subject><subject>Computer Security</subject><subject>Data Compression - methods</subject><subject>Data integrity</subject><subject>Diagnostic imaging</subject><subject>Diagnostic Imaging - methods</subject><subject>Digital imaging</subject><subject>Digital watermarks</subject><subject>Electronic health records</subject><subject>Evaluation</subject><subject>Feature extraction</subject><subject>Fourier transforms</subject><subject>Humans</subject><subject>Image compression</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image quality</subject><subject>Integrity</subject><subject>Intellectual property</subject><subject>Intellectual property law</subject><subject>Licensing, certification and accreditation</subject><subject>Medical imaging</subject><subject>Medical imaging equipment</subject><subject>Medical innovations</subject><subject>Methodology</subject><subject>Methods</subject><subject>Multimedia</subject><subject>Physical Sciences</subject><subject>Random noise</subject><subject>Research and Analysis Methods</subject><subject>Resilience</subject><subject>Robustness</subject><subject>Signal to noise ratio</subject><subject>Singular value decomposition</subject><subject>Watermarking</subject><subject>Wavelet transforms</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNklFv0zAQxy0EYlvhGyCIhITgIcWJHcd5QtVgUGnSpJXt1bo4TuqR2p3tMManx2XZ1KA9IEu2Zf_uf6f_HUKvMjzPSJl9vLKDM9DPt9aoOSa4ZFn1BB1mFclTlmPydO9-gI68v8K4IJyx5-iAVDmjVVkeouUiWV2cnyRgmmR1-TmtwasmcbYefEh-K2fTGwjKbcD90KZLWuuSjWq0hD7RG-hUok1QndPh9gV61kLv1cvxnKGLky_fj7-lp2dfl8eL01QWmIWUYNrkPAeQvJRc8gYoqSmuWIaZInVVtKwoeNnQMlcVo1Bj4FxKLEnLAagkM_TmTnfbWy9GF7wgGSacYkrySHwaiaGOxUplgoNebF2s2N0KC1pMf4xei87-FFkWjclLEhXejwrOXg_KB7HRXqq-B6Ps8DcZjemKuM3Q23_Qx0saqQ56JbRpbUwsd6JiwTGPzlC805o_QsXVqI2Wsc-tju-TgA-TgMgE9St0MHgvlqvz_2fPLqfsuz12raAPa2_7IWhr_BSkd6B01nun2geXMyx2Y3rvhtiNqRjHNIa93u_QQ9D9XJI_uVfgmw</recordid><startdate>20240912</startdate><enddate>20240912</enddate><creator>Taj, Rizwan</creator><creator>Tao, Feng</creator><creator>Kanwal, Saima</creator><creator>Almogren, Ahmad</creator><creator>Rehman, Ateeq Ur</creator><general>Public Library of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1611-9017</orcidid><orcidid>https://orcid.org/0000-0002-8253-9709</orcidid></search><sort><creationdate>20240912</creationdate><title>A SURF and SVD-based robust zero-watermarking for medical image integrity</title><author>Taj, Rizwan ; Tao, Feng ; Kanwal, Saima ; Almogren, Ahmad ; Rehman, Ateeq Ur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-304d282aac87c8c8da43b4096106e3b95f65587d472e964ab0a88cc0c3f8aa4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Authenticity</topic><topic>Biology and Life Sciences</topic><topic>Computer and Information Sciences</topic><topic>Computer Security</topic><topic>Data Compression - methods</topic><topic>Data integrity</topic><topic>Diagnostic imaging</topic><topic>Diagnostic Imaging - methods</topic><topic>Digital imaging</topic><topic>Digital watermarks</topic><topic>Electronic health records</topic><topic>Evaluation</topic><topic>Feature extraction</topic><topic>Fourier transforms</topic><topic>Humans</topic><topic>Image compression</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image quality</topic><topic>Integrity</topic><topic>Intellectual property</topic><topic>Intellectual property law</topic><topic>Licensing, certification and accreditation</topic><topic>Medical imaging</topic><topic>Medical imaging equipment</topic><topic>Medical innovations</topic><topic>Methodology</topic><topic>Methods</topic><topic>Multimedia</topic><topic>Physical Sciences</topic><topic>Random noise</topic><topic>Research and Analysis Methods</topic><topic>Resilience</topic><topic>Robustness</topic><topic>Signal to noise ratio</topic><topic>Singular value decomposition</topic><topic>Watermarking</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taj, Rizwan</creatorcontrib><creatorcontrib>Tao, Feng</creatorcontrib><creatorcontrib>Kanwal, Saima</creatorcontrib><creatorcontrib>Almogren, Ahmad</creatorcontrib><creatorcontrib>Rehman, Ateeq Ur</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taj, Rizwan</au><au>Tao, Feng</au><au>Kanwal, Saima</au><au>Almogren, Ahmad</au><au>Rehman, Ateeq Ur</au><au>Solak, Serdar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A SURF and SVD-based robust zero-watermarking for medical image integrity</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-09-12</date><risdate>2024</risdate><volume>19</volume><issue>9</issue><spage>e0307619</spage><pages>e0307619-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Medical image security is paramount in the digital era but remains a significant challenge. This paper introduces an innovative zero-watermarking methodology tailored for medical imaging, ensuring robust protection without compromising image quality. We utilize Sped-up Robust features for high-precision feature extraction and singular value decomposition (SVD) to embed watermarks into the frequency domain, preserving the original image's integrity. Our methodology uniquely encodes watermarks in a non-intrusive manner, leveraging the robustness of the extracted features and the resilience of the SVD approach. The embedded watermark is imperceptible, maintaining the diagnostic value of medical images. Extensive experiments under various attacks, including Gaussian noise, JPEG compression, and geometric distortions, demonstrate the methodology's superior performance. The results reveal exceptional robustness, with high Normalized Correlation (NC) and Peak Signal-to-noise ratio (PSNR) values, outperforming existing techniques. Specifically, under Gaussian noise and rotation attacks, the watermark retrieved from the encrypted domain maintained an NC value close to 1.00, signifying near-perfect resilience. Even under severe attacks such as 30% cropping, the methodology exhibited a significantly higher NC compared to current state-of-the-art methods.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>39264977</pmid><doi>10.1371/journal.pone.0307619</doi><tpages>e0307619</tpages><orcidid>https://orcid.org/0000-0003-1611-9017</orcidid><orcidid>https://orcid.org/0000-0002-8253-9709</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2024-09, Vol.19 (9), p.e0307619 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_3103840432 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algorithms Authenticity Biology and Life Sciences Computer and Information Sciences Computer Security Data Compression - methods Data integrity Diagnostic imaging Diagnostic Imaging - methods Digital imaging Digital watermarks Electronic health records Evaluation Feature extraction Fourier transforms Humans Image compression Image Processing, Computer-Assisted - methods Image quality Integrity Intellectual property Intellectual property law Licensing, certification and accreditation Medical imaging Medical imaging equipment Medical innovations Methodology Methods Multimedia Physical Sciences Random noise Research and Analysis Methods Resilience Robustness Signal to noise ratio Singular value decomposition Watermarking Wavelet transforms |
title | A SURF and SVD-based robust zero-watermarking for medical image integrity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A35%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20SURF%20and%20SVD-based%20robust%20zero-watermarking%20for%20medical%20image%20integrity&rft.jtitle=PloS%20one&rft.au=Taj,%20Rizwan&rft.date=2024-09-12&rft.volume=19&rft.issue=9&rft.spage=e0307619&rft.pages=e0307619-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0307619&rft_dat=%3Cgale_plos_%3EA808506400%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3103840432&rft_id=info:pmid/39264977&rft_galeid=A808506400&rfr_iscdi=true |