Modeling of SPM-GRU ping-pong ball trajectory prediction incorporating YOLOv4-Tiny algorithm
The research aims to lift the accuracy of table tennis trajectory prediction through advanced computer vision and deep learning techniques to achieve real-time and accurate table tennis ball position and motion trajectory tracking. The study concentrates on the innovative application of a micro-mini...
Gespeichert in:
Veröffentlicht in: | PloS one 2024-09, Vol.19 (9), p.e0306483 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | e0306483 |
container_title | PloS one |
container_volume | 19 |
creator | He, Fuxing Li, Yongan |
description | The research aims to lift the accuracy of table tennis trajectory prediction through advanced computer vision and deep learning techniques to achieve real-time and accurate table tennis ball position and motion trajectory tracking. The study concentrates on the innovative application of a micro-miniature fourth-generation real-time target detection algorithm with a gated loop unit to table tennis ball motion analysis by combining physical models and deep learning methods. The results show that in the comparison experiments, the improved micro-miniature fourth-generation real-time target detection algorithm outperforms the traditional target detection algorithm, with the loss value decreasing to 1.54. Its average accuracy in multi-target recognition is dramatically increased to 86.74%, which is 22.36% higher than the original model, and the ping-pong ball recognition experiments show that it has an excellent accuracy in various lighting conditions, especially in low light, with an average accuracy of 89.12%. Meanwhile, the improved model achieves a processing efficiency of 85 frames/s. In addition, compared with the traditional trajectory prediction model, the constructed model performs the best in table tennis ball trajectory prediction, with errors of 4.5 mm, 25.3 mm, and 35.58 mm. The results show that the research trajectory prediction model achieves significant results in accurately tracking table tennis ball positions and trajectories. It not only has practical application value for table tennis training and competition strategies, but also provides a useful reference for the similar techniques application in other sports. |
doi_str_mv | 10.1371/journal.pone.0306483 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3101516900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A807537850</galeid><doaj_id>oai_doaj_org_article_6a05eabe5e2e45c78cc6206f506f9dce</doaj_id><sourcerecordid>A807537850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-5835c904c99e5aaac0cf2de32b45b1dfda5a0a66cb64bb91d185b97b572380473</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6D0QLguhFx6Rp-nG5LLoOzDKyH4IghNMk7WRIm26SivPvTZ3usiN7ISEkOTzvOeHljaLXGC0wKfCnrRltD3oxmF4uEEF5VpIn0TGuSJrkKSJPH9yPohfObRGipMzz59ERqdIMFVV6HP28MEJq1bexaeKrbxfJ-eVNPIR3Evq2cQ1ax97CVnJv7C4erBSKe2X6WPXc2MFY8JP6x3q1_pUl16rfxaBbY5XfdC-jZw1oJ1_N50l08-Xz9dnXZLU-X56drhJOce4TWhLKK5TxqpIUADjiTSokSeuM1lg0AiggyHNe51ldV1jgktZVUdMiJSXKCnISvd33HbRxbDbGMYIRDgMqhAKx3BPCwJYNVnVgd8yAYn8LxrYMrFdcS5YDohJqSWUqM8qLkvNgYd7QsCvBZej1YZ5mze0onWedclxqDb004zyWkjQjAX33D_r452aqhTBf9Y0JjvOpKTstUUFJUdKJWjxChSVkp3gIQaNC_UDw8UAQGC9_-xZG59jy6vL_2fX3Q_b9A3YjQfuNM3qcUuEOwWwPcmucs7K5Nx4jNmX4zg02ZZjNGQ6yN7NpY91JcS-6Cy35Az7r6kw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3101516900</pqid></control><display><type>article</type><title>Modeling of SPM-GRU ping-pong ball trajectory prediction incorporating YOLOv4-Tiny algorithm</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>Free E-Journal (出版社公開部分のみ)</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>He, Fuxing ; Li, Yongan</creator><contributor>Huang, Qionghao</contributor><creatorcontrib>He, Fuxing ; Li, Yongan ; Huang, Qionghao</creatorcontrib><description>The research aims to lift the accuracy of table tennis trajectory prediction through advanced computer vision and deep learning techniques to achieve real-time and accurate table tennis ball position and motion trajectory tracking. The study concentrates on the innovative application of a micro-miniature fourth-generation real-time target detection algorithm with a gated loop unit to table tennis ball motion analysis by combining physical models and deep learning methods. The results show that in the comparison experiments, the improved micro-miniature fourth-generation real-time target detection algorithm outperforms the traditional target detection algorithm, with the loss value decreasing to 1.54. Its average accuracy in multi-target recognition is dramatically increased to 86.74%, which is 22.36% higher than the original model, and the ping-pong ball recognition experiments show that it has an excellent accuracy in various lighting conditions, especially in low light, with an average accuracy of 89.12%. Meanwhile, the improved model achieves a processing efficiency of 85 frames/s. In addition, compared with the traditional trajectory prediction model, the constructed model performs the best in table tennis ball trajectory prediction, with errors of 4.5 mm, 25.3 mm, and 35.58 mm. The results show that the research trajectory prediction model achieves significant results in accurately tracking table tennis ball positions and trajectories. It not only has practical application value for table tennis training and competition strategies, but also provides a useful reference for the similar techniques application in other sports.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0306483</identifier><identifier>PMID: 39240792</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Algorithms ; Analysis ; Artificial intelligence ; Computer vision ; Deep Learning ; Edge computing ; Humans ; Localization ; Machine learning ; Methods ; Motion perception ; Prediction models ; Real time ; Table tennis ; Target detection ; Target recognition ; Tennis ; Tennis equipment ; Tracking ; Training ; Vehicles ; Virtual reality</subject><ispartof>PloS one, 2024-09, Vol.19 (9), p.e0306483</ispartof><rights>Copyright: © 2024 He, Li. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 He, Li. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 He, Li. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c516t-5835c904c99e5aaac0cf2de32b45b1dfda5a0a66cb64bb91d185b97b572380473</cites><orcidid>0009-0002-8432-9702</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0306483&type=printable$$EPDF$$P50$$Gplos$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.plos.org/plosone/article?id=10.1371/journal.pone.0306483$$EHTML$$P50$$Gplos$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,2928,23866,27924,27925,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39240792$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Huang, Qionghao</contributor><creatorcontrib>He, Fuxing</creatorcontrib><creatorcontrib>Li, Yongan</creatorcontrib><title>Modeling of SPM-GRU ping-pong ball trajectory prediction incorporating YOLOv4-Tiny algorithm</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The research aims to lift the accuracy of table tennis trajectory prediction through advanced computer vision and deep learning techniques to achieve real-time and accurate table tennis ball position and motion trajectory tracking. The study concentrates on the innovative application of a micro-miniature fourth-generation real-time target detection algorithm with a gated loop unit to table tennis ball motion analysis by combining physical models and deep learning methods. The results show that in the comparison experiments, the improved micro-miniature fourth-generation real-time target detection algorithm outperforms the traditional target detection algorithm, with the loss value decreasing to 1.54. Its average accuracy in multi-target recognition is dramatically increased to 86.74%, which is 22.36% higher than the original model, and the ping-pong ball recognition experiments show that it has an excellent accuracy in various lighting conditions, especially in low light, with an average accuracy of 89.12%. Meanwhile, the improved model achieves a processing efficiency of 85 frames/s. In addition, compared with the traditional trajectory prediction model, the constructed model performs the best in table tennis ball trajectory prediction, with errors of 4.5 mm, 25.3 mm, and 35.58 mm. The results show that the research trajectory prediction model achieves significant results in accurately tracking table tennis ball positions and trajectories. It not only has practical application value for table tennis training and competition strategies, but also provides a useful reference for the similar techniques application in other sports.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial intelligence</subject><subject>Computer vision</subject><subject>Deep Learning</subject><subject>Edge computing</subject><subject>Humans</subject><subject>Localization</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Motion perception</subject><subject>Prediction models</subject><subject>Real time</subject><subject>Table tennis</subject><subject>Target detection</subject><subject>Target recognition</subject><subject>Tennis</subject><subject>Tennis equipment</subject><subject>Tracking</subject><subject>Training</subject><subject>Vehicles</subject><subject>Virtual reality</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rr6D0QLguhFx6Rp-nG5LLoOzDKyH4IghNMk7WRIm26SivPvTZ3usiN7ISEkOTzvOeHljaLXGC0wKfCnrRltD3oxmF4uEEF5VpIn0TGuSJrkKSJPH9yPohfObRGipMzz59ERqdIMFVV6HP28MEJq1bexaeKrbxfJ-eVNPIR3Evq2cQ1ax97CVnJv7C4erBSKe2X6WPXc2MFY8JP6x3q1_pUl16rfxaBbY5XfdC-jZw1oJ1_N50l08-Xz9dnXZLU-X56drhJOce4TWhLKK5TxqpIUADjiTSokSeuM1lg0AiggyHNe51ldV1jgktZVUdMiJSXKCnISvd33HbRxbDbGMYIRDgMqhAKx3BPCwJYNVnVgd8yAYn8LxrYMrFdcS5YDohJqSWUqM8qLkvNgYd7QsCvBZej1YZ5mze0onWedclxqDb004zyWkjQjAX33D_r452aqhTBf9Y0JjvOpKTstUUFJUdKJWjxChSVkp3gIQaNC_UDw8UAQGC9_-xZG59jy6vL_2fX3Q_b9A3YjQfuNM3qcUuEOwWwPcmucs7K5Nx4jNmX4zg02ZZjNGQ6yN7NpY91JcS-6Cy35Az7r6kw</recordid><startdate>20240906</startdate><enddate>20240906</enddate><creator>He, Fuxing</creator><creator>Li, Yongan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0002-8432-9702</orcidid></search><sort><creationdate>20240906</creationdate><title>Modeling of SPM-GRU ping-pong ball trajectory prediction incorporating YOLOv4-Tiny algorithm</title><author>He, Fuxing ; Li, Yongan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-5835c904c99e5aaac0cf2de32b45b1dfda5a0a66cb64bb91d185b97b572380473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial intelligence</topic><topic>Computer vision</topic><topic>Deep Learning</topic><topic>Edge computing</topic><topic>Humans</topic><topic>Localization</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Motion perception</topic><topic>Prediction models</topic><topic>Real time</topic><topic>Table tennis</topic><topic>Target detection</topic><topic>Target recognition</topic><topic>Tennis</topic><topic>Tennis equipment</topic><topic>Tracking</topic><topic>Training</topic><topic>Vehicles</topic><topic>Virtual reality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Fuxing</creatorcontrib><creatorcontrib>Li, Yongan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Fuxing</au><au>Li, Yongan</au><au>Huang, Qionghao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of SPM-GRU ping-pong ball trajectory prediction incorporating YOLOv4-Tiny algorithm</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-09-06</date><risdate>2024</risdate><volume>19</volume><issue>9</issue><spage>e0306483</spage><pages>e0306483-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The research aims to lift the accuracy of table tennis trajectory prediction through advanced computer vision and deep learning techniques to achieve real-time and accurate table tennis ball position and motion trajectory tracking. The study concentrates on the innovative application of a micro-miniature fourth-generation real-time target detection algorithm with a gated loop unit to table tennis ball motion analysis by combining physical models and deep learning methods. The results show that in the comparison experiments, the improved micro-miniature fourth-generation real-time target detection algorithm outperforms the traditional target detection algorithm, with the loss value decreasing to 1.54. Its average accuracy in multi-target recognition is dramatically increased to 86.74%, which is 22.36% higher than the original model, and the ping-pong ball recognition experiments show that it has an excellent accuracy in various lighting conditions, especially in low light, with an average accuracy of 89.12%. Meanwhile, the improved model achieves a processing efficiency of 85 frames/s. In addition, compared with the traditional trajectory prediction model, the constructed model performs the best in table tennis ball trajectory prediction, with errors of 4.5 mm, 25.3 mm, and 35.58 mm. The results show that the research trajectory prediction model achieves significant results in accurately tracking table tennis ball positions and trajectories. It not only has practical application value for table tennis training and competition strategies, but also provides a useful reference for the similar techniques application in other sports.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>39240792</pmid><doi>10.1371/journal.pone.0306483</doi><tpages>e0306483</tpages><orcidid>https://orcid.org/0009-0002-8432-9702</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2024-09, Vol.19 (9), p.e0306483 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_3101516900 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; Free E-Journal (出版社公開部分のみ); DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Accuracy Algorithms Analysis Artificial intelligence Computer vision Deep Learning Edge computing Humans Localization Machine learning Methods Motion perception Prediction models Real time Table tennis Target detection Target recognition Tennis Tennis equipment Tracking Training Vehicles Virtual reality |
title | Modeling of SPM-GRU ping-pong ball trajectory prediction incorporating YOLOv4-Tiny algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A39%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20SPM-GRU%20ping-pong%20ball%20trajectory%20prediction%20incorporating%20YOLOv4-Tiny%20algorithm&rft.jtitle=PloS%20one&rft.au=He,%20Fuxing&rft.date=2024-09-06&rft.volume=19&rft.issue=9&rft.spage=e0306483&rft.pages=e0306483-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0306483&rft_dat=%3Cgale_plos_%3EA807537850%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3101516900&rft_id=info:pmid/39240792&rft_galeid=A807537850&rft_doaj_id=oai_doaj_org_article_6a05eabe5e2e45c78cc6206f506f9dce&rfr_iscdi=true |