Aqueous extract of Peristrophe bivalvis (L.) Merr. leaf reversed the detrimental effects of nitric oxide synthase inhibitor on blood lipid profile and glucose level

There is evidence that nitric oxide (NO) modulates the metabolism of glucose and lipid, and some antihypertensive medications have been shown to affect glucose and lipid metabolism. Peristrophe bivalvis is a medicinal plant that has been shown to have antihypertensive properties. The study investiga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2024-09, Vol.19 (9), p.e0308338
Hauptverfasser: Aluko, Esther Oluwasola, David, Ubong Edem, Ojetola, Abodunrin Adebayo, Fasanmade, Adesoji Adedipe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There is evidence that nitric oxide (NO) modulates the metabolism of glucose and lipid, and some antihypertensive medications have been shown to affect glucose and lipid metabolism. Peristrophe bivalvis is a medicinal plant that has been shown to have antihypertensive properties. The study investigated the effect of aqueous extract of Peristrophe bivalvis leaf (APB) on fasting blood glucose level (FBG) and lipid profile in rats pretreated with nitro-L-arginine methyl ester (L-NAME). Male Wistar rats (150-170 g, n=30) were randomly divided into two groups: control (CT, n=5) and L-NAME pretreated (n=25). CT received 5 mL/kg of distilled water [DW]) while L-NAME pretreated group received 60 mg/kg of L-NAME (L-NAME60) for eight weeks. After eight weeks, the L-NAME pretreated group was randomly subdivided into L-NAME group (LN), L-NAME recovery group (LRE), L-NAME ramipril group (LRA), and L-NAME APB group (LAPB). The groups received L-NAME60+DW, DW, L-NAME60+10 mg/kg ramipril, and L-NAME60+APB (200 mg/kg), respectively, for five weeks. Serum NO, lipid profile, cyclic guanosine monophosphate (cGMP), and insulin were measured by spectrophotometry, assay kits, and ELISA, respectively. Data were analysed using ANOVA at p < 0.05. At the eighth week, a fall in FBG and an increase in triglyceride, total cholesterol, and low-density lipoprotein cholesterol were recorded in L8 compared to CT. The same effects were also noticed in the thirteenth week in LN. However, FBG was significantly increased and lipid levels were decreased in LAPB compared to LN. A significant increase was observed in cGMP level in LAPB compared to LN. The study showed that APB corrected the hyperlipidemia and hypoglycemia caused by L-NAME, and this effect might be via the activation of cGMP.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0308338