Predicting neutralization susceptibility to combination HIV-1 monoclonal broadly neutralizing antibody regimens

Combination monoclonal broadly neutralizing antibodies (bnAbs) are currently being developed for preventing HIV-1 acquisition. Recent work has focused on predicting in vitro neutralization potency of both individual bnAbs and combination regimens against HIV-1 pseudoviruses using Env sequence featur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2024-09, Vol.19 (9), p.e0310042
Hauptverfasser: Williamson, Brian D, Wu, Liana, Huang, Yunda, Hudson, Aaron, Gilbert, Peter B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page e0310042
container_title PloS one
container_volume 19
creator Williamson, Brian D
Wu, Liana
Huang, Yunda
Hudson, Aaron
Gilbert, Peter B
description Combination monoclonal broadly neutralizing antibodies (bnAbs) are currently being developed for preventing HIV-1 acquisition. Recent work has focused on predicting in vitro neutralization potency of both individual bnAbs and combination regimens against HIV-1 pseudoviruses using Env sequence features. To predict in vitro combination regimen neutralization potency against a given HIV-1 pseudovirus, previous approaches have applied mathematical models to combine individual-bnAb neutralization and have predicted this combined neutralization value; we call this the combine-then-predict (CP) approach. However, prediction performance for some individual bnAbs has exceeded that for the combination, leading to another possibility: combining the individual-bnAb predicted values and using these to predict combination regimen neutralization; we call this the predict-then-combine (PC) approach. We explore both approaches in both simulated data and data from the Los Alamos National Laboratory's Compile, Neutralize, and Tally NAb Panels repository. The CP approach is superior to the PC approach when the neutralization outcome of interest is binary (e.g., neutralization susceptibility, defined as inhibitory 80% concentration < 1 μg/mL). For continuous outcomes, the CP approach performs nearly as well as the PC approach when the individual-bnAb prediction algorithms have strong performance, and is superior to the PC approach when the individual-bnAb prediction algorithms have poor performance. This knowledge may be used when building prediction models for novel antibody combinations in the absence of in vitro neutralization data for the antibody combination; this, in turn, will aid in the evaluation and down-selection of these antibody combinations into prevention efficacy trials.
doi_str_mv 10.1371/journal.pone.0310042
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3101516611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A807537696</galeid><doaj_id>oai_doaj_org_article_093a96afaadf49dd990fb774664ec753</doaj_id><sourcerecordid>A807537696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-e639c5d717abd339107bebfea8d746d584680da8a0d0bd21662bbb7a5bea2a0e3</originalsourceid><addsrcrecordid>eNqNkl1rFDEYhQdRbK3-A9EBQfRi1mQyk5lclqJ2oVDxo7fhzcdss2SSNcmA6683253WrvRCcjEh87znvBxOUbzEaIFJhz-s_RQc2MXGO71ABCPU1I-KY8xIXdEakcf37kfFsxjXCLWkp_RpcURY3SDG2uPCfwlaGZmMW5VOTymANb8hGe_KOEWpN8kIY03alsmX0o_CuP3f8-VVhcvROy-tz3uUInhQdvtXZScJLs97tS2DXplRu_i8eDKAjfrF_D0pfnz6-P3svLq4_Lw8O72oZItpqjQlTLaqwx0IRQjDqBNaDBp61TVUtX1De6SgB6SQUDWmtBZCdNAKDTUgTU6K13vdjfWRz1lFnmPC2YBinInlnlAe1nwTzAhhyz0YfvPgw4pDSEZazREjwCgMAGpomFKMoUF0eRHaaNm1JGu9m92C_znpmPhocnjWgtN-mm1bghnN6Jt_0IeXm6kVZH_jBp8zlTtRftqjbNnRG63FA1Q-So9G5l4MJr8fDLw_GMhM0r_SCqYY-fLb1_9nL68O2bf32GsNNl1Hb6ddU-Ih2OxBGXyMQQ93wWPEd7W-TYPvas3nWuexV3Nokxi1uhu67TH5A-Fs88c</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3101516611</pqid></control><display><type>article</type><title>Predicting neutralization susceptibility to combination HIV-1 monoclonal broadly neutralizing antibody regimens</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Williamson, Brian D ; Wu, Liana ; Huang, Yunda ; Hudson, Aaron ; Gilbert, Peter B</creator><creatorcontrib>Williamson, Brian D ; Wu, Liana ; Huang, Yunda ; Hudson, Aaron ; Gilbert, Peter B</creatorcontrib><description>Combination monoclonal broadly neutralizing antibodies (bnAbs) are currently being developed for preventing HIV-1 acquisition. Recent work has focused on predicting in vitro neutralization potency of both individual bnAbs and combination regimens against HIV-1 pseudoviruses using Env sequence features. To predict in vitro combination regimen neutralization potency against a given HIV-1 pseudovirus, previous approaches have applied mathematical models to combine individual-bnAb neutralization and have predicted this combined neutralization value; we call this the combine-then-predict (CP) approach. However, prediction performance for some individual bnAbs has exceeded that for the combination, leading to another possibility: combining the individual-bnAb predicted values and using these to predict combination regimen neutralization; we call this the predict-then-combine (PC) approach. We explore both approaches in both simulated data and data from the Los Alamos National Laboratory's Compile, Neutralize, and Tally NAb Panels repository. The CP approach is superior to the PC approach when the neutralization outcome of interest is binary (e.g., neutralization susceptibility, defined as inhibitory 80% concentration &lt; 1 μg/mL). For continuous outcomes, the CP approach performs nearly as well as the PC approach when the individual-bnAb prediction algorithms have strong performance, and is superior to the PC approach when the individual-bnAb prediction algorithms have poor performance. This knowledge may be used when building prediction models for novel antibody combinations in the absence of in vitro neutralization data for the antibody combination; this, in turn, will aid in the evaluation and down-selection of these antibody combinations into prevention efficacy trials.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0310042</identifier><identifier>PMID: 39240995</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Antibodies ; Antibodies, Monoclonal - immunology ; Antibodies, Neutralizing - immunology ; Datasets ; Disease susceptibility ; HIV ; HIV Antibodies - immunology ; HIV infection ; HIV Infections - drug therapy ; HIV Infections - immunology ; HIV Infections - virology ; HIV-1 - drug effects ; HIV-1 - immunology ; Human immunodeficiency virus ; Humans ; Mathematical models ; Monoclonal antibodies ; Neutralization ; Neutralization Tests - methods ; Neutralizing ; Performance prediction ; Prediction models ; Prevention ; Risk factors ; Testing ; Viral antibodies</subject><ispartof>PloS one, 2024-09, Vol.19 (9), p.e0310042</ispartof><rights>Copyright: © 2024 Williamson et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Williamson et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Williamson et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c516t-e639c5d717abd339107bebfea8d746d584680da8a0d0bd21662bbb7a5bea2a0e3</cites><orcidid>0000-0002-7024-548X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0310042&amp;type=printable$$EPDF$$P50$$Gplos$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.plos.org/plosone/article?id=10.1371/journal.pone.0310042$$EHTML$$P50$$Gplos$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,2915,23845,27901,27902,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39240995$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Williamson, Brian D</creatorcontrib><creatorcontrib>Wu, Liana</creatorcontrib><creatorcontrib>Huang, Yunda</creatorcontrib><creatorcontrib>Hudson, Aaron</creatorcontrib><creatorcontrib>Gilbert, Peter B</creatorcontrib><title>Predicting neutralization susceptibility to combination HIV-1 monoclonal broadly neutralizing antibody regimens</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Combination monoclonal broadly neutralizing antibodies (bnAbs) are currently being developed for preventing HIV-1 acquisition. Recent work has focused on predicting in vitro neutralization potency of both individual bnAbs and combination regimens against HIV-1 pseudoviruses using Env sequence features. To predict in vitro combination regimen neutralization potency against a given HIV-1 pseudovirus, previous approaches have applied mathematical models to combine individual-bnAb neutralization and have predicted this combined neutralization value; we call this the combine-then-predict (CP) approach. However, prediction performance for some individual bnAbs has exceeded that for the combination, leading to another possibility: combining the individual-bnAb predicted values and using these to predict combination regimen neutralization; we call this the predict-then-combine (PC) approach. We explore both approaches in both simulated data and data from the Los Alamos National Laboratory's Compile, Neutralize, and Tally NAb Panels repository. The CP approach is superior to the PC approach when the neutralization outcome of interest is binary (e.g., neutralization susceptibility, defined as inhibitory 80% concentration &lt; 1 μg/mL). For continuous outcomes, the CP approach performs nearly as well as the PC approach when the individual-bnAb prediction algorithms have strong performance, and is superior to the PC approach when the individual-bnAb prediction algorithms have poor performance. This knowledge may be used when building prediction models for novel antibody combinations in the absence of in vitro neutralization data for the antibody combination; this, in turn, will aid in the evaluation and down-selection of these antibody combinations into prevention efficacy trials.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Antibodies</subject><subject>Antibodies, Monoclonal - immunology</subject><subject>Antibodies, Neutralizing - immunology</subject><subject>Datasets</subject><subject>Disease susceptibility</subject><subject>HIV</subject><subject>HIV Antibodies - immunology</subject><subject>HIV infection</subject><subject>HIV Infections - drug therapy</subject><subject>HIV Infections - immunology</subject><subject>HIV Infections - virology</subject><subject>HIV-1 - drug effects</subject><subject>HIV-1 - immunology</subject><subject>Human immunodeficiency virus</subject><subject>Humans</subject><subject>Mathematical models</subject><subject>Monoclonal antibodies</subject><subject>Neutralization</subject><subject>Neutralization Tests - methods</subject><subject>Neutralizing</subject><subject>Performance prediction</subject><subject>Prediction models</subject><subject>Prevention</subject><subject>Risk factors</subject><subject>Testing</subject><subject>Viral antibodies</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1rFDEYhQdRbK3-A9EBQfRi1mQyk5lclqJ2oVDxo7fhzcdss2SSNcmA6683253WrvRCcjEh87znvBxOUbzEaIFJhz-s_RQc2MXGO71ABCPU1I-KY8xIXdEakcf37kfFsxjXCLWkp_RpcURY3SDG2uPCfwlaGZmMW5VOTymANb8hGe_KOEWpN8kIY03alsmX0o_CuP3f8-VVhcvROy-tz3uUInhQdvtXZScJLs97tS2DXplRu_i8eDKAjfrF_D0pfnz6-P3svLq4_Lw8O72oZItpqjQlTLaqwx0IRQjDqBNaDBp61TVUtX1De6SgB6SQUDWmtBZCdNAKDTUgTU6K13vdjfWRz1lFnmPC2YBinInlnlAe1nwTzAhhyz0YfvPgw4pDSEZazREjwCgMAGpomFKMoUF0eRHaaNm1JGu9m92C_znpmPhocnjWgtN-mm1bghnN6Jt_0IeXm6kVZH_jBp8zlTtRftqjbNnRG63FA1Q-So9G5l4MJr8fDLw_GMhM0r_SCqYY-fLb1_9nL68O2bf32GsNNl1Hb6ddU-Ih2OxBGXyMQQ93wWPEd7W-TYPvas3nWuexV3Nokxi1uhu67TH5A-Fs88c</recordid><startdate>20240906</startdate><enddate>20240906</enddate><creator>Williamson, Brian D</creator><creator>Wu, Liana</creator><creator>Huang, Yunda</creator><creator>Hudson, Aaron</creator><creator>Gilbert, Peter B</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7024-548X</orcidid></search><sort><creationdate>20240906</creationdate><title>Predicting neutralization susceptibility to combination HIV-1 monoclonal broadly neutralizing antibody regimens</title><author>Williamson, Brian D ; Wu, Liana ; Huang, Yunda ; Hudson, Aaron ; Gilbert, Peter B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-e639c5d717abd339107bebfea8d746d584680da8a0d0bd21662bbb7a5bea2a0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Antibodies</topic><topic>Antibodies, Monoclonal - immunology</topic><topic>Antibodies, Neutralizing - immunology</topic><topic>Datasets</topic><topic>Disease susceptibility</topic><topic>HIV</topic><topic>HIV Antibodies - immunology</topic><topic>HIV infection</topic><topic>HIV Infections - drug therapy</topic><topic>HIV Infections - immunology</topic><topic>HIV Infections - virology</topic><topic>HIV-1 - drug effects</topic><topic>HIV-1 - immunology</topic><topic>Human immunodeficiency virus</topic><topic>Humans</topic><topic>Mathematical models</topic><topic>Monoclonal antibodies</topic><topic>Neutralization</topic><topic>Neutralization Tests - methods</topic><topic>Neutralizing</topic><topic>Performance prediction</topic><topic>Prediction models</topic><topic>Prevention</topic><topic>Risk factors</topic><topic>Testing</topic><topic>Viral antibodies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Williamson, Brian D</creatorcontrib><creatorcontrib>Wu, Liana</creatorcontrib><creatorcontrib>Huang, Yunda</creatorcontrib><creatorcontrib>Hudson, Aaron</creatorcontrib><creatorcontrib>Gilbert, Peter B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Williamson, Brian D</au><au>Wu, Liana</au><au>Huang, Yunda</au><au>Hudson, Aaron</au><au>Gilbert, Peter B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting neutralization susceptibility to combination HIV-1 monoclonal broadly neutralizing antibody regimens</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-09-06</date><risdate>2024</risdate><volume>19</volume><issue>9</issue><spage>e0310042</spage><pages>e0310042-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Combination monoclonal broadly neutralizing antibodies (bnAbs) are currently being developed for preventing HIV-1 acquisition. Recent work has focused on predicting in vitro neutralization potency of both individual bnAbs and combination regimens against HIV-1 pseudoviruses using Env sequence features. To predict in vitro combination regimen neutralization potency against a given HIV-1 pseudovirus, previous approaches have applied mathematical models to combine individual-bnAb neutralization and have predicted this combined neutralization value; we call this the combine-then-predict (CP) approach. However, prediction performance for some individual bnAbs has exceeded that for the combination, leading to another possibility: combining the individual-bnAb predicted values and using these to predict combination regimen neutralization; we call this the predict-then-combine (PC) approach. We explore both approaches in both simulated data and data from the Los Alamos National Laboratory's Compile, Neutralize, and Tally NAb Panels repository. The CP approach is superior to the PC approach when the neutralization outcome of interest is binary (e.g., neutralization susceptibility, defined as inhibitory 80% concentration &lt; 1 μg/mL). For continuous outcomes, the CP approach performs nearly as well as the PC approach when the individual-bnAb prediction algorithms have strong performance, and is superior to the PC approach when the individual-bnAb prediction algorithms have poor performance. This knowledge may be used when building prediction models for novel antibody combinations in the absence of in vitro neutralization data for the antibody combination; this, in turn, will aid in the evaluation and down-selection of these antibody combinations into prevention efficacy trials.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>39240995</pmid><doi>10.1371/journal.pone.0310042</doi><orcidid>https://orcid.org/0000-0002-7024-548X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2024-09, Vol.19 (9), p.e0310042
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_3101516611
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Analysis
Antibodies
Antibodies, Monoclonal - immunology
Antibodies, Neutralizing - immunology
Datasets
Disease susceptibility
HIV
HIV Antibodies - immunology
HIV infection
HIV Infections - drug therapy
HIV Infections - immunology
HIV Infections - virology
HIV-1 - drug effects
HIV-1 - immunology
Human immunodeficiency virus
Humans
Mathematical models
Monoclonal antibodies
Neutralization
Neutralization Tests - methods
Neutralizing
Performance prediction
Prediction models
Prevention
Risk factors
Testing
Viral antibodies
title Predicting neutralization susceptibility to combination HIV-1 monoclonal broadly neutralizing antibody regimens
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A26%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20neutralization%20susceptibility%20to%20combination%20HIV-1%20monoclonal%20broadly%20neutralizing%20antibody%20regimens&rft.jtitle=PloS%20one&rft.au=Williamson,%20Brian%20D&rft.date=2024-09-06&rft.volume=19&rft.issue=9&rft.spage=e0310042&rft.pages=e0310042-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0310042&rft_dat=%3Cgale_plos_%3EA807537696%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3101516611&rft_id=info:pmid/39240995&rft_galeid=A807537696&rft_doaj_id=oai_doaj_org_article_093a96afaadf49dd990fb774664ec753&rfr_iscdi=true