Fuzzy clustering of 24-2 visual field patterns can detect glaucoma progression

To represent 24-2 visual field (VF) losses of individual patients using a hybrid approach of archetypal analysis (AA) and fuzzy c-means (FCM) clustering. In this multicenter retrospective study, we classified characteristic patterns of 24-2 VF using AA and decomposed them with FCM clustering. We pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2024-09, Vol.19 (9), p.e0309011
Hauptverfasser: Kim, Hwayeong, Moon, Sangwoo, Lee, Joohwang, Kim, EunAh, Jin, Sang Wook, Kim, Jung Lim, Lee, Seung Uk, Kim, Jinmi, Yoo, Seungtae, Lee, Jiwon, Song, Giltae, Lee, Jiwoong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page e0309011
container_title PloS one
container_volume 19
creator Kim, Hwayeong
Moon, Sangwoo
Lee, Joohwang
Kim, EunAh
Jin, Sang Wook
Kim, Jung Lim
Lee, Seung Uk
Kim, Jinmi
Yoo, Seungtae
Lee, Jiwon
Song, Giltae
Lee, Jiwoong
description To represent 24-2 visual field (VF) losses of individual patients using a hybrid approach of archetypal analysis (AA) and fuzzy c-means (FCM) clustering. In this multicenter retrospective study, we classified characteristic patterns of 24-2 VF using AA and decomposed them with FCM clustering. We predicted the change in mean deviation (MD) through supervised machine learning from decomposition coefficient change. In addition, we compared the areas under the receiver operating characteristic curves (AUCs) of the decomposition coefficient slopes to detect VF progression using three criteria: MD slope, Visual Field Index slope, and pointwise linear regression analysis. We identified 16 characteristic patterns (archetypes or ATs) of 24-2 VF from 132,938 VFs of 18,033 participants using AA. The hybrid approach using FCM revealed a lower mean squared error and greater correlation coefficient than the AA single approach for predicting MD change (all P ≤ 0.001). Three of 16 AUCs of the FCM decomposition coefficient slopes outperformed the AA decomposition coefficient slopes in detecting VF progression for all three criteria (AT5, superior altitudinal defect; AT10, double arcuate defect; AT13, total loss) (all P ≤ 0.028). A hybrid approach combining AA and FCM to analyze 24-2 VF can visualize VF tests in characteristic patterns and enhance detection of VF progression with lossless decomposition.
doi_str_mv 10.1371/journal.pone.0309011
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3100825608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A807251494</galeid><doaj_id>oai_doaj_org_article_682268e3399f4d428ba72e01b5fee174</doaj_id><sourcerecordid>A807251494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c572t-85b83fc65f531fe60eb742a875f8b070efb37df374d7fcce2b390bb4405ac33d3</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEoqXwDxBEQkJw2MUfSeycUFVRWKmiEl9Xy3HGWa-88dZ2Ktpfj8Om1Qb1gHyw5XnmHc_4zbKXGC0xZfjDxg2-l3a5cz0sEUU1wvhRdoxrShYVQfTxwfkoexbCBqGS8qp6mh3RmlCMGTnOvp4Pt7c3ubJDiOBN3-VO56RYkPzahEHaXBuwbb6TMYX7kCvZ5y1EUDHvrByU28p8513nIQTj-ufZEy1tgBfTfpL9PP_04-zL4uLy8-rs9GKhSkbigpcNp1pVpS4p1lAhaFhBJGel5g1iCHRDWaspK1qmlQLS0Bo1TVGgUipKW3qSvd7r7qwLYhpFEBQjxElZIZ6I1Z5ondyInTdb6W-Ek0b8vXC-E9JHoyyIihNScaC0rnXRFoQ3khFAuCk1AGZF0vo4VRuaLbQK-uilnYnOI71Zi85dC5x-inLCksK7ScG7qwFCFFsTFFgre3DD_uE1pgUa0Tf_oA-3N1GdTB2YXrtUWI2i4pQjRkpc1OPDlw9QabWwNSoZR5t0P0t4P0tITITfsZNDCGL1_dv_s5e_5uzbA3YN0sZ1cHaIyTNhDhZ7UHkXggd9P2WMxOj7u2mI0fdi8n1Ke3X4Q_dJd0anfwBWF_wa</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100825608</pqid></control><display><type>article</type><title>Fuzzy clustering of 24-2 visual field patterns can detect glaucoma progression</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kim, Hwayeong ; Moon, Sangwoo ; Lee, Joohwang ; Kim, EunAh ; Jin, Sang Wook ; Kim, Jung Lim ; Lee, Seung Uk ; Kim, Jinmi ; Yoo, Seungtae ; Lee, Jiwon ; Song, Giltae ; Lee, Jiwoong</creator><creatorcontrib>Kim, Hwayeong ; Moon, Sangwoo ; Lee, Joohwang ; Kim, EunAh ; Jin, Sang Wook ; Kim, Jung Lim ; Lee, Seung Uk ; Kim, Jinmi ; Yoo, Seungtae ; Lee, Jiwon ; Song, Giltae ; Lee, Jiwoong</creatorcontrib><description>To represent 24-2 visual field (VF) losses of individual patients using a hybrid approach of archetypal analysis (AA) and fuzzy c-means (FCM) clustering. In this multicenter retrospective study, we classified characteristic patterns of 24-2 VF using AA and decomposed them with FCM clustering. We predicted the change in mean deviation (MD) through supervised machine learning from decomposition coefficient change. In addition, we compared the areas under the receiver operating characteristic curves (AUCs) of the decomposition coefficient slopes to detect VF progression using three criteria: MD slope, Visual Field Index slope, and pointwise linear regression analysis. We identified 16 characteristic patterns (archetypes or ATs) of 24-2 VF from 132,938 VFs of 18,033 participants using AA. The hybrid approach using FCM revealed a lower mean squared error and greater correlation coefficient than the AA single approach for predicting MD change (all P ≤ 0.001). Three of 16 AUCs of the FCM decomposition coefficient slopes outperformed the AA decomposition coefficient slopes in detecting VF progression for all three criteria (AT5, superior altitudinal defect; AT10, double arcuate defect; AT13, total loss) (all P ≤ 0.028). A hybrid approach combining AA and FCM to analyze 24-2 VF can visualize VF tests in characteristic patterns and enhance detection of VF progression with lossless decomposition.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0309011</identifier><identifier>PMID: 39231172</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aged ; Algorithms ; Analysis ; Area Under Curve ; Artificial intelligence ; Automation ; Biology and Life Sciences ; Care and treatment ; Cluster Analysis ; Clustering ; Correlation coefficient ; Correlation coefficients ; Criteria ; Datasets ; Decomposition ; Defects ; Development and progression ; Disease Progression ; Error detection ; Female ; Fuzzy Logic ; Glaucoma ; Glaucoma - diagnosis ; Glaucoma - physiopathology ; Health aspects ; Hospitals ; Humans ; Machine learning ; Male ; Medicine and Health Sciences ; Methods ; Middle Aged ; Physical Sciences ; Quality of life ; Regression analysis ; Research and Analysis Methods ; Retrospective Studies ; ROC Curve ; Slopes ; Social Sciences ; Supervised learning ; Visual field ; Visual Field Tests - methods ; Visual fields ; Visual Fields - physiology</subject><ispartof>PloS one, 2024-09, Vol.19 (9), p.e0309011</ispartof><rights>Copyright: © 2024 Kim et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Kim et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Kim et al 2024 Kim et al</rights><rights>2024 Kim et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c572t-85b83fc65f531fe60eb742a875f8b070efb37df374d7fcce2b390bb4405ac33d3</cites><orcidid>0000-0002-1053-612X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373827/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373827/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39231172$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Hwayeong</creatorcontrib><creatorcontrib>Moon, Sangwoo</creatorcontrib><creatorcontrib>Lee, Joohwang</creatorcontrib><creatorcontrib>Kim, EunAh</creatorcontrib><creatorcontrib>Jin, Sang Wook</creatorcontrib><creatorcontrib>Kim, Jung Lim</creatorcontrib><creatorcontrib>Lee, Seung Uk</creatorcontrib><creatorcontrib>Kim, Jinmi</creatorcontrib><creatorcontrib>Yoo, Seungtae</creatorcontrib><creatorcontrib>Lee, Jiwon</creatorcontrib><creatorcontrib>Song, Giltae</creatorcontrib><creatorcontrib>Lee, Jiwoong</creatorcontrib><title>Fuzzy clustering of 24-2 visual field patterns can detect glaucoma progression</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>To represent 24-2 visual field (VF) losses of individual patients using a hybrid approach of archetypal analysis (AA) and fuzzy c-means (FCM) clustering. In this multicenter retrospective study, we classified characteristic patterns of 24-2 VF using AA and decomposed them with FCM clustering. We predicted the change in mean deviation (MD) through supervised machine learning from decomposition coefficient change. In addition, we compared the areas under the receiver operating characteristic curves (AUCs) of the decomposition coefficient slopes to detect VF progression using three criteria: MD slope, Visual Field Index slope, and pointwise linear regression analysis. We identified 16 characteristic patterns (archetypes or ATs) of 24-2 VF from 132,938 VFs of 18,033 participants using AA. The hybrid approach using FCM revealed a lower mean squared error and greater correlation coefficient than the AA single approach for predicting MD change (all P ≤ 0.001). Three of 16 AUCs of the FCM decomposition coefficient slopes outperformed the AA decomposition coefficient slopes in detecting VF progression for all three criteria (AT5, superior altitudinal defect; AT10, double arcuate defect; AT13, total loss) (all P ≤ 0.028). A hybrid approach combining AA and FCM to analyze 24-2 VF can visualize VF tests in characteristic patterns and enhance detection of VF progression with lossless decomposition.</description><subject>Aged</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Area Under Curve</subject><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Biology and Life Sciences</subject><subject>Care and treatment</subject><subject>Cluster Analysis</subject><subject>Clustering</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Criteria</subject><subject>Datasets</subject><subject>Decomposition</subject><subject>Defects</subject><subject>Development and progression</subject><subject>Disease Progression</subject><subject>Error detection</subject><subject>Female</subject><subject>Fuzzy Logic</subject><subject>Glaucoma</subject><subject>Glaucoma - diagnosis</subject><subject>Glaucoma - physiopathology</subject><subject>Health aspects</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Machine learning</subject><subject>Male</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Middle Aged</subject><subject>Physical Sciences</subject><subject>Quality of life</subject><subject>Regression analysis</subject><subject>Research and Analysis Methods</subject><subject>Retrospective Studies</subject><subject>ROC Curve</subject><subject>Slopes</subject><subject>Social Sciences</subject><subject>Supervised learning</subject><subject>Visual field</subject><subject>Visual Field Tests - methods</subject><subject>Visual fields</subject><subject>Visual Fields - physiology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk1v1DAQhiMEoqXwDxBEQkJw2MUfSeycUFVRWKmiEl9Xy3HGWa-88dZ2Ktpfj8Om1Qb1gHyw5XnmHc_4zbKXGC0xZfjDxg2-l3a5cz0sEUU1wvhRdoxrShYVQfTxwfkoexbCBqGS8qp6mh3RmlCMGTnOvp4Pt7c3ubJDiOBN3-VO56RYkPzahEHaXBuwbb6TMYX7kCvZ5y1EUDHvrByU28p8513nIQTj-ufZEy1tgBfTfpL9PP_04-zL4uLy8-rs9GKhSkbigpcNp1pVpS4p1lAhaFhBJGel5g1iCHRDWaspK1qmlQLS0Bo1TVGgUipKW3qSvd7r7qwLYhpFEBQjxElZIZ6I1Z5ondyInTdb6W-Ek0b8vXC-E9JHoyyIihNScaC0rnXRFoQ3khFAuCk1AGZF0vo4VRuaLbQK-uilnYnOI71Zi85dC5x-inLCksK7ScG7qwFCFFsTFFgre3DD_uE1pgUa0Tf_oA-3N1GdTB2YXrtUWI2i4pQjRkpc1OPDlw9QabWwNSoZR5t0P0t4P0tITITfsZNDCGL1_dv_s5e_5uzbA3YN0sZ1cHaIyTNhDhZ7UHkXggd9P2WMxOj7u2mI0fdi8n1Ke3X4Q_dJd0anfwBWF_wa</recordid><startdate>20240904</startdate><enddate>20240904</enddate><creator>Kim, Hwayeong</creator><creator>Moon, Sangwoo</creator><creator>Lee, Joohwang</creator><creator>Kim, EunAh</creator><creator>Jin, Sang Wook</creator><creator>Kim, Jung Lim</creator><creator>Lee, Seung Uk</creator><creator>Kim, Jinmi</creator><creator>Yoo, Seungtae</creator><creator>Lee, Jiwon</creator><creator>Song, Giltae</creator><creator>Lee, Jiwoong</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1053-612X</orcidid></search><sort><creationdate>20240904</creationdate><title>Fuzzy clustering of 24-2 visual field patterns can detect glaucoma progression</title><author>Kim, Hwayeong ; Moon, Sangwoo ; Lee, Joohwang ; Kim, EunAh ; Jin, Sang Wook ; Kim, Jung Lim ; Lee, Seung Uk ; Kim, Jinmi ; Yoo, Seungtae ; Lee, Jiwon ; Song, Giltae ; Lee, Jiwoong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c572t-85b83fc65f531fe60eb742a875f8b070efb37df374d7fcce2b390bb4405ac33d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aged</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Area Under Curve</topic><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Biology and Life Sciences</topic><topic>Care and treatment</topic><topic>Cluster Analysis</topic><topic>Clustering</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Criteria</topic><topic>Datasets</topic><topic>Decomposition</topic><topic>Defects</topic><topic>Development and progression</topic><topic>Disease Progression</topic><topic>Error detection</topic><topic>Female</topic><topic>Fuzzy Logic</topic><topic>Glaucoma</topic><topic>Glaucoma - diagnosis</topic><topic>Glaucoma - physiopathology</topic><topic>Health aspects</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Machine learning</topic><topic>Male</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Middle Aged</topic><topic>Physical Sciences</topic><topic>Quality of life</topic><topic>Regression analysis</topic><topic>Research and Analysis Methods</topic><topic>Retrospective Studies</topic><topic>ROC Curve</topic><topic>Slopes</topic><topic>Social Sciences</topic><topic>Supervised learning</topic><topic>Visual field</topic><topic>Visual Field Tests - methods</topic><topic>Visual fields</topic><topic>Visual Fields - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Hwayeong</creatorcontrib><creatorcontrib>Moon, Sangwoo</creatorcontrib><creatorcontrib>Lee, Joohwang</creatorcontrib><creatorcontrib>Kim, EunAh</creatorcontrib><creatorcontrib>Jin, Sang Wook</creatorcontrib><creatorcontrib>Kim, Jung Lim</creatorcontrib><creatorcontrib>Lee, Seung Uk</creatorcontrib><creatorcontrib>Kim, Jinmi</creatorcontrib><creatorcontrib>Yoo, Seungtae</creatorcontrib><creatorcontrib>Lee, Jiwon</creatorcontrib><creatorcontrib>Song, Giltae</creatorcontrib><creatorcontrib>Lee, Jiwoong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Hwayeong</au><au>Moon, Sangwoo</au><au>Lee, Joohwang</au><au>Kim, EunAh</au><au>Jin, Sang Wook</au><au>Kim, Jung Lim</au><au>Lee, Seung Uk</au><au>Kim, Jinmi</au><au>Yoo, Seungtae</au><au>Lee, Jiwon</au><au>Song, Giltae</au><au>Lee, Jiwoong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy clustering of 24-2 visual field patterns can detect glaucoma progression</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-09-04</date><risdate>2024</risdate><volume>19</volume><issue>9</issue><spage>e0309011</spage><pages>e0309011-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>To represent 24-2 visual field (VF) losses of individual patients using a hybrid approach of archetypal analysis (AA) and fuzzy c-means (FCM) clustering. In this multicenter retrospective study, we classified characteristic patterns of 24-2 VF using AA and decomposed them with FCM clustering. We predicted the change in mean deviation (MD) through supervised machine learning from decomposition coefficient change. In addition, we compared the areas under the receiver operating characteristic curves (AUCs) of the decomposition coefficient slopes to detect VF progression using three criteria: MD slope, Visual Field Index slope, and pointwise linear regression analysis. We identified 16 characteristic patterns (archetypes or ATs) of 24-2 VF from 132,938 VFs of 18,033 participants using AA. The hybrid approach using FCM revealed a lower mean squared error and greater correlation coefficient than the AA single approach for predicting MD change (all P ≤ 0.001). Three of 16 AUCs of the FCM decomposition coefficient slopes outperformed the AA decomposition coefficient slopes in detecting VF progression for all three criteria (AT5, superior altitudinal defect; AT10, double arcuate defect; AT13, total loss) (all P ≤ 0.028). A hybrid approach combining AA and FCM to analyze 24-2 VF can visualize VF tests in characteristic patterns and enhance detection of VF progression with lossless decomposition.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>39231172</pmid><doi>10.1371/journal.pone.0309011</doi><tpages>e0309011</tpages><orcidid>https://orcid.org/0000-0002-1053-612X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2024-09, Vol.19 (9), p.e0309011
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_3100825608
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Aged
Algorithms
Analysis
Area Under Curve
Artificial intelligence
Automation
Biology and Life Sciences
Care and treatment
Cluster Analysis
Clustering
Correlation coefficient
Correlation coefficients
Criteria
Datasets
Decomposition
Defects
Development and progression
Disease Progression
Error detection
Female
Fuzzy Logic
Glaucoma
Glaucoma - diagnosis
Glaucoma - physiopathology
Health aspects
Hospitals
Humans
Machine learning
Male
Medicine and Health Sciences
Methods
Middle Aged
Physical Sciences
Quality of life
Regression analysis
Research and Analysis Methods
Retrospective Studies
ROC Curve
Slopes
Social Sciences
Supervised learning
Visual field
Visual Field Tests - methods
Visual fields
Visual Fields - physiology
title Fuzzy clustering of 24-2 visual field patterns can detect glaucoma progression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A48%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20clustering%20of%2024-2%20visual%20field%20patterns%20can%20detect%20glaucoma%20progression&rft.jtitle=PloS%20one&rft.au=Kim,%20Hwayeong&rft.date=2024-09-04&rft.volume=19&rft.issue=9&rft.spage=e0309011&rft.pages=e0309011-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0309011&rft_dat=%3Cgale_plos_%3EA807251494%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3100825608&rft_id=info:pmid/39231172&rft_galeid=A807251494&rft_doaj_id=oai_doaj_org_article_682268e3399f4d428ba72e01b5fee174&rfr_iscdi=true