Automated brain tumor diagnostics: Empowering neuro-oncology with deep learning-based MRI image analysis
Brain tumors, characterized by the uncontrolled growth of abnormal cells, pose a significant threat to human health. Early detection is crucial for successful treatment and improved patient outcomes. Magnetic Resonance Imaging (MRI) is the primary diagnostic tool for brain tumors, providing detailed...
Gespeichert in:
Veröffentlicht in: | PloS one 2024-08, Vol.19 (8), p.e0306493 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | e0306493 |
container_title | PloS one |
container_volume | 19 |
creator | Gunasekaran, Subathra Mercy Bai, Prabin Selvestar Mathivanan, Sandeep Kumar Rajadurai, Hariharan Shivahare, Basu Dev Shah, Mohd Asif |
description | Brain tumors, characterized by the uncontrolled growth of abnormal cells, pose a significant threat to human health. Early detection is crucial for successful treatment and improved patient outcomes. Magnetic Resonance Imaging (MRI) is the primary diagnostic tool for brain tumors, providing detailed visualizations of the brain's intricate structures. However, the complexity and variability of tumor shapes and locations often challenge physicians in achieving accurate tumor segmentation on MRI images. Precise tumor segmentation is essential for effective treatment planning and prognosis. To address this challenge, we propose a novel hybrid deep learning technique, Convolutional Neural Network and ResNeXt101 (ConvNet-ResNeXt101), for automated tumor segmentation and classification. Our approach commences with data acquisition from the BRATS 2020 dataset, a benchmark collection of MRI images with corresponding tumor segmentations. Next, we employ batch normalization to smooth and enhance the collected data, followed by feature extraction using the AlexNet model. This involves extracting features based on tumor shape, position, shape, and surface characteristics. To select the most informative features for effective segmentation, we utilize an advanced meta-heuristics algorithm called Advanced Whale Optimization (AWO). AWO mimics the hunting behavior of humpback whales to iteratively search for the optimal feature subset. With the selected features, we perform image segmentation using the ConvNet-ResNeXt101 model. This deep learning architecture combines the strengths of ConvNet and ResNeXt101, a type of ConvNet with aggregated residual connections. Finally, we apply the same ConvNet-ResNeXt101 model for tumor classification, categorizing the segmented tumor into distinct types. Our experiments demonstrate the superior performance of our proposed ConvNet-ResNeXt101 model compared to existing approaches, achieving an accuracy of 99.27% for the tumor core class with a minimum learning elapsed time of 0.53 s. |
doi_str_mv | 10.1371/journal.pone.0306493 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3097787471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A806307751</galeid><doaj_id>oai_doaj_org_article_b496e8bf45f24cc1a8956df53d21c76e</doaj_id><sourcerecordid>A806307751</sourcerecordid><originalsourceid>FETCH-LOGICAL-d527t-f627e926b9b163019a796a548790ded4bafedf6449f8fdb738840000995116203</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6D0QLguhFx6Rpk8YbGZZVB1YW1o_bkDYnnSxtMiap6_x7M84oU9kLk4uEk-e855yXZNlTjBaYMPzmxk3eymGxcRYWiCBacXIvO8WclAUtEbl_dD_JHoVwg1BNGkofZieEY45oWZ5m6-UU3SgjqLz10tg8TqPzuTKyty5E04W3-cW4cbfgje1zC5N3hbOdG1y_zW9NXOcKYJMPIL1NRNHKkLQ-Xa9yM8oecpl63AYTHmcPtBwCPDmcZ9nX9xdfzj8Wl1cfVufLy0LVJYuFpiUDXtKWt5gShLlknMq6ahhHClTVSg1K06riutGqZaRpKpQW5zXGu1HPsud73c3ggjiYFARBnLGGVQwnYrUnlJM3YuNTn34rnDTid8D5XkifJh9AtBWn0LS6qnVZdR2WDa-p0jVRJe4YhaT17lBtakdQHdjo5TATnb9Ysxa9-yEwJhXHuEwKrw4K3n2fIEQxmtDBMEgLbto33tSY4CahL_5B7x7vQPUyTWCsdqlwtxMVywYlTxmrd9TiDiptBaPp0pfSJsVnCa9nCYmJ8DP2cgpBrD5f_z979W3Ovjxi1yCHuA5umKJxNszBZ8dW__X4z18mvwAgkPPM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097787471</pqid></control><display><type>article</type><title>Automated brain tumor diagnostics: Empowering neuro-oncology with deep learning-based MRI image analysis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Gunasekaran, Subathra ; Mercy Bai, Prabin Selvestar ; Mathivanan, Sandeep Kumar ; Rajadurai, Hariharan ; Shivahare, Basu Dev ; Shah, Mohd Asif</creator><creatorcontrib>Gunasekaran, Subathra ; Mercy Bai, Prabin Selvestar ; Mathivanan, Sandeep Kumar ; Rajadurai, Hariharan ; Shivahare, Basu Dev ; Shah, Mohd Asif</creatorcontrib><description>Brain tumors, characterized by the uncontrolled growth of abnormal cells, pose a significant threat to human health. Early detection is crucial for successful treatment and improved patient outcomes. Magnetic Resonance Imaging (MRI) is the primary diagnostic tool for brain tumors, providing detailed visualizations of the brain's intricate structures. However, the complexity and variability of tumor shapes and locations often challenge physicians in achieving accurate tumor segmentation on MRI images. Precise tumor segmentation is essential for effective treatment planning and prognosis. To address this challenge, we propose a novel hybrid deep learning technique, Convolutional Neural Network and ResNeXt101 (ConvNet-ResNeXt101), for automated tumor segmentation and classification. Our approach commences with data acquisition from the BRATS 2020 dataset, a benchmark collection of MRI images with corresponding tumor segmentations. Next, we employ batch normalization to smooth and enhance the collected data, followed by feature extraction using the AlexNet model. This involves extracting features based on tumor shape, position, shape, and surface characteristics. To select the most informative features for effective segmentation, we utilize an advanced meta-heuristics algorithm called Advanced Whale Optimization (AWO). AWO mimics the hunting behavior of humpback whales to iteratively search for the optimal feature subset. With the selected features, we perform image segmentation using the ConvNet-ResNeXt101 model. This deep learning architecture combines the strengths of ConvNet and ResNeXt101, a type of ConvNet with aggregated residual connections. Finally, we apply the same ConvNet-ResNeXt101 model for tumor classification, categorizing the segmented tumor into distinct types. Our experiments demonstrate the superior performance of our proposed ConvNet-ResNeXt101 model compared to existing approaches, achieving an accuracy of 99.27% for the tumor core class with a minimum learning elapsed time of 0.53 s.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0306493</identifier><identifier>PMID: 39190622</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Algorithms ; Analysis ; Architecture ; Artificial neural networks ; Automation ; Biology and Life Sciences ; Brain ; Brain cancer ; Brain Neoplasms - diagnostic imaging ; Brain research ; Brain tumors ; Care and treatment ; Classification ; Computer and Information Sciences ; Data acquisition ; Data collection ; Data entry ; Datasets ; Deep Learning ; Diagnosis ; Evaluation ; Feature extraction ; Human error ; Humans ; Image acquisition ; Image analysis ; Image enhancement ; Image processing ; Image Processing, Computer-Assisted - methods ; Image segmentation ; Machine learning ; Magnetic resonance ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Medical imaging ; Medical imaging equipment ; Medical research ; Medicine and Health Sciences ; Neural networks ; Neural Networks, Computer ; Neuroimaging ; Oncology ; Performance evaluation ; Predatory behavior ; Research and Analysis Methods ; Research methodology ; Support vector machines ; Surface properties ; Technology application ; Tumors ; User interface ; Whaling</subject><ispartof>PloS one, 2024-08, Vol.19 (8), p.e0306493</ispartof><rights>Copyright: © 2024 Gunasekaran et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Gunasekaran et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Gunasekaran et al 2024 Gunasekaran et al</rights><rights>2024 Gunasekaran et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0351-9559</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349112/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349112/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39190622$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gunasekaran, Subathra</creatorcontrib><creatorcontrib>Mercy Bai, Prabin Selvestar</creatorcontrib><creatorcontrib>Mathivanan, Sandeep Kumar</creatorcontrib><creatorcontrib>Rajadurai, Hariharan</creatorcontrib><creatorcontrib>Shivahare, Basu Dev</creatorcontrib><creatorcontrib>Shah, Mohd Asif</creatorcontrib><title>Automated brain tumor diagnostics: Empowering neuro-oncology with deep learning-based MRI image analysis</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Brain tumors, characterized by the uncontrolled growth of abnormal cells, pose a significant threat to human health. Early detection is crucial for successful treatment and improved patient outcomes. Magnetic Resonance Imaging (MRI) is the primary diagnostic tool for brain tumors, providing detailed visualizations of the brain's intricate structures. However, the complexity and variability of tumor shapes and locations often challenge physicians in achieving accurate tumor segmentation on MRI images. Precise tumor segmentation is essential for effective treatment planning and prognosis. To address this challenge, we propose a novel hybrid deep learning technique, Convolutional Neural Network and ResNeXt101 (ConvNet-ResNeXt101), for automated tumor segmentation and classification. Our approach commences with data acquisition from the BRATS 2020 dataset, a benchmark collection of MRI images with corresponding tumor segmentations. Next, we employ batch normalization to smooth and enhance the collected data, followed by feature extraction using the AlexNet model. This involves extracting features based on tumor shape, position, shape, and surface characteristics. To select the most informative features for effective segmentation, we utilize an advanced meta-heuristics algorithm called Advanced Whale Optimization (AWO). AWO mimics the hunting behavior of humpback whales to iteratively search for the optimal feature subset. With the selected features, we perform image segmentation using the ConvNet-ResNeXt101 model. This deep learning architecture combines the strengths of ConvNet and ResNeXt101, a type of ConvNet with aggregated residual connections. Finally, we apply the same ConvNet-ResNeXt101 model for tumor classification, categorizing the segmented tumor into distinct types. Our experiments demonstrate the superior performance of our proposed ConvNet-ResNeXt101 model compared to existing approaches, achieving an accuracy of 99.27% for the tumor core class with a minimum learning elapsed time of 0.53 s.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Architecture</subject><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Biology and Life Sciences</subject><subject>Brain</subject><subject>Brain cancer</subject><subject>Brain Neoplasms - diagnostic imaging</subject><subject>Brain research</subject><subject>Brain tumors</subject><subject>Care and treatment</subject><subject>Classification</subject><subject>Computer and Information Sciences</subject><subject>Data acquisition</subject><subject>Data collection</subject><subject>Data entry</subject><subject>Datasets</subject><subject>Deep Learning</subject><subject>Diagnosis</subject><subject>Evaluation</subject><subject>Feature extraction</subject><subject>Human error</subject><subject>Humans</subject><subject>Image acquisition</subject><subject>Image analysis</subject><subject>Image enhancement</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medical imaging</subject><subject>Medical imaging equipment</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Neuroimaging</subject><subject>Oncology</subject><subject>Performance evaluation</subject><subject>Predatory behavior</subject><subject>Research and Analysis Methods</subject><subject>Research methodology</subject><subject>Support vector machines</subject><subject>Surface properties</subject><subject>Technology application</subject><subject>Tumors</subject><subject>User interface</subject><subject>Whaling</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rr6D0QLguhFx6Rpk8YbGZZVB1YW1o_bkDYnnSxtMiap6_x7M84oU9kLk4uEk-e855yXZNlTjBaYMPzmxk3eymGxcRYWiCBacXIvO8WclAUtEbl_dD_JHoVwg1BNGkofZieEY45oWZ5m6-UU3SgjqLz10tg8TqPzuTKyty5E04W3-cW4cbfgje1zC5N3hbOdG1y_zW9NXOcKYJMPIL1NRNHKkLQ-Xa9yM8oecpl63AYTHmcPtBwCPDmcZ9nX9xdfzj8Wl1cfVufLy0LVJYuFpiUDXtKWt5gShLlknMq6ahhHClTVSg1K06riutGqZaRpKpQW5zXGu1HPsud73c3ggjiYFARBnLGGVQwnYrUnlJM3YuNTn34rnDTid8D5XkifJh9AtBWn0LS6qnVZdR2WDa-p0jVRJe4YhaT17lBtakdQHdjo5TATnb9Ysxa9-yEwJhXHuEwKrw4K3n2fIEQxmtDBMEgLbto33tSY4CahL_5B7x7vQPUyTWCsdqlwtxMVywYlTxmrd9TiDiptBaPp0pfSJsVnCa9nCYmJ8DP2cgpBrD5f_z979W3Ovjxi1yCHuA5umKJxNszBZ8dW__X4z18mvwAgkPPM</recordid><startdate>20240827</startdate><enddate>20240827</enddate><creator>Gunasekaran, Subathra</creator><creator>Mercy Bai, Prabin Selvestar</creator><creator>Mathivanan, Sandeep Kumar</creator><creator>Rajadurai, Hariharan</creator><creator>Shivahare, Basu Dev</creator><creator>Shah, Mohd Asif</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0351-9559</orcidid></search><sort><creationdate>20240827</creationdate><title>Automated brain tumor diagnostics: Empowering neuro-oncology with deep learning-based MRI image analysis</title><author>Gunasekaran, Subathra ; Mercy Bai, Prabin Selvestar ; Mathivanan, Sandeep Kumar ; Rajadurai, Hariharan ; Shivahare, Basu Dev ; Shah, Mohd Asif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d527t-f627e926b9b163019a796a548790ded4bafedf6449f8fdb738840000995116203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Architecture</topic><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Biology and Life Sciences</topic><topic>Brain</topic><topic>Brain cancer</topic><topic>Brain Neoplasms - diagnostic imaging</topic><topic>Brain research</topic><topic>Brain tumors</topic><topic>Care and treatment</topic><topic>Classification</topic><topic>Computer and Information Sciences</topic><topic>Data acquisition</topic><topic>Data collection</topic><topic>Data entry</topic><topic>Datasets</topic><topic>Deep Learning</topic><topic>Diagnosis</topic><topic>Evaluation</topic><topic>Feature extraction</topic><topic>Human error</topic><topic>Humans</topic><topic>Image acquisition</topic><topic>Image analysis</topic><topic>Image enhancement</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medical imaging</topic><topic>Medical imaging equipment</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Neuroimaging</topic><topic>Oncology</topic><topic>Performance evaluation</topic><topic>Predatory behavior</topic><topic>Research and Analysis Methods</topic><topic>Research methodology</topic><topic>Support vector machines</topic><topic>Surface properties</topic><topic>Technology application</topic><topic>Tumors</topic><topic>User interface</topic><topic>Whaling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gunasekaran, Subathra</creatorcontrib><creatorcontrib>Mercy Bai, Prabin Selvestar</creatorcontrib><creatorcontrib>Mathivanan, Sandeep Kumar</creatorcontrib><creatorcontrib>Rajadurai, Hariharan</creatorcontrib><creatorcontrib>Shivahare, Basu Dev</creatorcontrib><creatorcontrib>Shah, Mohd Asif</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gunasekaran, Subathra</au><au>Mercy Bai, Prabin Selvestar</au><au>Mathivanan, Sandeep Kumar</au><au>Rajadurai, Hariharan</au><au>Shivahare, Basu Dev</au><au>Shah, Mohd Asif</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated brain tumor diagnostics: Empowering neuro-oncology with deep learning-based MRI image analysis</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-08-27</date><risdate>2024</risdate><volume>19</volume><issue>8</issue><spage>e0306493</spage><pages>e0306493-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Brain tumors, characterized by the uncontrolled growth of abnormal cells, pose a significant threat to human health. Early detection is crucial for successful treatment and improved patient outcomes. Magnetic Resonance Imaging (MRI) is the primary diagnostic tool for brain tumors, providing detailed visualizations of the brain's intricate structures. However, the complexity and variability of tumor shapes and locations often challenge physicians in achieving accurate tumor segmentation on MRI images. Precise tumor segmentation is essential for effective treatment planning and prognosis. To address this challenge, we propose a novel hybrid deep learning technique, Convolutional Neural Network and ResNeXt101 (ConvNet-ResNeXt101), for automated tumor segmentation and classification. Our approach commences with data acquisition from the BRATS 2020 dataset, a benchmark collection of MRI images with corresponding tumor segmentations. Next, we employ batch normalization to smooth and enhance the collected data, followed by feature extraction using the AlexNet model. This involves extracting features based on tumor shape, position, shape, and surface characteristics. To select the most informative features for effective segmentation, we utilize an advanced meta-heuristics algorithm called Advanced Whale Optimization (AWO). AWO mimics the hunting behavior of humpback whales to iteratively search for the optimal feature subset. With the selected features, we perform image segmentation using the ConvNet-ResNeXt101 model. This deep learning architecture combines the strengths of ConvNet and ResNeXt101, a type of ConvNet with aggregated residual connections. Finally, we apply the same ConvNet-ResNeXt101 model for tumor classification, categorizing the segmented tumor into distinct types. Our experiments demonstrate the superior performance of our proposed ConvNet-ResNeXt101 model compared to existing approaches, achieving an accuracy of 99.27% for the tumor core class with a minimum learning elapsed time of 0.53 s.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>39190622</pmid><doi>10.1371/journal.pone.0306493</doi><tpages>e0306493</tpages><orcidid>https://orcid.org/0000-0002-0351-9559</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2024-08, Vol.19 (8), p.e0306493 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_3097787471 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Accuracy Algorithms Analysis Architecture Artificial neural networks Automation Biology and Life Sciences Brain Brain cancer Brain Neoplasms - diagnostic imaging Brain research Brain tumors Care and treatment Classification Computer and Information Sciences Data acquisition Data collection Data entry Datasets Deep Learning Diagnosis Evaluation Feature extraction Human error Humans Image acquisition Image analysis Image enhancement Image processing Image Processing, Computer-Assisted - methods Image segmentation Machine learning Magnetic resonance Magnetic resonance imaging Magnetic Resonance Imaging - methods Medical imaging Medical imaging equipment Medical research Medicine and Health Sciences Neural networks Neural Networks, Computer Neuroimaging Oncology Performance evaluation Predatory behavior Research and Analysis Methods Research methodology Support vector machines Surface properties Technology application Tumors User interface Whaling |
title | Automated brain tumor diagnostics: Empowering neuro-oncology with deep learning-based MRI image analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A24%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20brain%20tumor%20diagnostics:%20Empowering%20neuro-oncology%20with%20deep%20learning-based%20MRI%20image%20analysis&rft.jtitle=PloS%20one&rft.au=Gunasekaran,%20Subathra&rft.date=2024-08-27&rft.volume=19&rft.issue=8&rft.spage=e0306493&rft.pages=e0306493-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0306493&rft_dat=%3Cgale_plos_%3EA806307751%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3097787471&rft_id=info:pmid/39190622&rft_galeid=A806307751&rft_doaj_id=oai_doaj_org_article_b496e8bf45f24cc1a8956df53d21c76e&rfr_iscdi=true |