Comparative genomics of the closely related fungal genera Cryptococcus and Kwoniella reveals karyotype dynamics and suggests evolutionary mechanisms of pathogenesis
In exploring the evolutionary trajectories of both pathogenesis and karyotype dynamics in fungi, we conducted a large-scale comparative genomic analysis spanning the Cryptococcus genus, encompassing both global human fungal pathogens and nonpathogenic species, and related species from the sister gen...
Gespeichert in:
Veröffentlicht in: | PLoS biology 2024-06, Vol.22 (6), p.e3002682 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | e3002682 |
container_title | PLoS biology |
container_volume | 22 |
creator | Coelho, Marco A David-Palma, Márcia Shea, Terrance Bowers, Katharine McGinley-Smith, Sage Mohammad, Arman W Gnirke, Andreas Yurkov, Andrey M Nowrousian, Minou Sun, Sheng Cuomo, Christina A Heitman, Joseph |
description | In exploring the evolutionary trajectories of both pathogenesis and karyotype dynamics in fungi, we conducted a large-scale comparative genomic analysis spanning the Cryptococcus genus, encompassing both global human fungal pathogens and nonpathogenic species, and related species from the sister genus Kwoniella. Chromosome-level genome assemblies were generated for multiple species, covering virtually all known diversity within these genera. Although Cryptococcus and Kwoniella have comparable genome sizes (about 19.2 and 22.9 Mb) and similar gene content, hinting at preadaptive pathogenic potential, our analysis found evidence of gene gain (via horizontal gene transfer) and gene loss in pathogenic Cryptococcus species, which might represent evolutionary signatures of pathogenic development. Genome analysis also revealed a significant variation in chromosome number and structure between the 2 genera. By combining synteny analysis and experimental centromere validation, we found that most Cryptococcus species have 14 chromosomes, whereas most Kwoniella species have fewer (11, 8, 5, or even as few as 3). Reduced chromosome number in Kwoniella is associated with formation of giant chromosomes (up to 18 Mb) through repeated chromosome fusion events, each marked by a pericentric inversion and centromere loss. While similar chromosome inversion-fusion patterns were observed in all Kwoniella species with fewer than 14 chromosomes, no such pattern was detected in Cryptococcus. Instead, Cryptococcus species with less than 14 chromosomes showed reductions primarily through rearrangements associated with the loss of repeat-rich centromeres. Additionally, Cryptococcus genomes exhibited frequent interchromosomal translocations, including intercentromeric recombination facilitated by transposons shared between centromeres. Overall, our findings advance our understanding of genetic changes possibly associated with pathogenicity in Cryptococcus and provide a foundation to elucidate mechanisms of centromere loss and chromosome fusion driving distinct karyotypes in closely related fungal species, including prominent global human pathogens. |
doi_str_mv | 10.1371/journal.pbio.3002682 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3086942190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A800670433</galeid><doaj_id>oai_doaj_org_article_7d4fb4fbff1a4c5cbc0badce4e9fce91</doaj_id><sourcerecordid>A800670433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c645t-4a6a9db650955e4d312cea18824bda988049698c4452b78030dcb7abf32e7f113</originalsourceid><addsrcrecordid>eNqVk9tu1DAQhiMEoqXwBggscQMXu9iJkzhXVbXiUFFRidOtNXEmWZfEDrazsO_Dg-K026qLegFyJEf2N_9vz3iS5CmjS5aV7PWFnZyBfjnW2i4zStNCpPeSQ5bzfFEKkd-_9X-QPPL-IjJplYqHyUEmBM8yRg-T3ys7jOAg6A2SDo0dtPLEtiSskajeeuy3xGEPARvSTqaDfsbQAVm57RisskpNnoBpyIef1mjse4gBG4Tek-_gtjZsRyTN1sCl9Az6qevQB09wY_spaGsiRwZUazDaD5f-I4S1nZ289o-TB22Uwye7-Sj5-vbNl9X7xdn5u9PVydlCFTwPCw4FVE1d5LTKc-RNxlKFwIRIed1AJQTlVVEJxXme1qWgGW1UXULdZimWLWPZUfL8SneMF5e7BHuZUVFUPGUVjcTpFdFYuJCj00M8ubSg5eWCdZ0EF7TqUZYNb-v4tS0DrnJVK1pDo5Bj1SqsZrfjndtUDxh3THDQ74nu7xi9lp3dSMaYyHOaRYWXOwVnf0wxo3LQXs0VMGin-eBFXgken0ZEX_yF3n29HRXLjFKb1kZjNYvKE0FpUdL4bCK1vIOKo8FYYmuw1XF9L-DVXkBkAv4KHUzey9PPn_6D_fjv7Pm3fZZfscpZ7x22N4lmVM4NdZ0QOTeU3DVUDHt2u0g3QdcdlP0BZUcggw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086942190</pqid></control><display><type>article</type><title>Comparative genomics of the closely related fungal genera Cryptococcus and Kwoniella reveals karyotype dynamics and suggests evolutionary mechanisms of pathogenesis</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Coelho, Marco A ; David-Palma, Márcia ; Shea, Terrance ; Bowers, Katharine ; McGinley-Smith, Sage ; Mohammad, Arman W ; Gnirke, Andreas ; Yurkov, Andrey M ; Nowrousian, Minou ; Sun, Sheng ; Cuomo, Christina A ; Heitman, Joseph</creator><creatorcontrib>Coelho, Marco A ; David-Palma, Márcia ; Shea, Terrance ; Bowers, Katharine ; McGinley-Smith, Sage ; Mohammad, Arman W ; Gnirke, Andreas ; Yurkov, Andrey M ; Nowrousian, Minou ; Sun, Sheng ; Cuomo, Christina A ; Heitman, Joseph</creatorcontrib><description>In exploring the evolutionary trajectories of both pathogenesis and karyotype dynamics in fungi, we conducted a large-scale comparative genomic analysis spanning the Cryptococcus genus, encompassing both global human fungal pathogens and nonpathogenic species, and related species from the sister genus Kwoniella. Chromosome-level genome assemblies were generated for multiple species, covering virtually all known diversity within these genera. Although Cryptococcus and Kwoniella have comparable genome sizes (about 19.2 and 22.9 Mb) and similar gene content, hinting at preadaptive pathogenic potential, our analysis found evidence of gene gain (via horizontal gene transfer) and gene loss in pathogenic Cryptococcus species, which might represent evolutionary signatures of pathogenic development. Genome analysis also revealed a significant variation in chromosome number and structure between the 2 genera. By combining synteny analysis and experimental centromere validation, we found that most Cryptococcus species have 14 chromosomes, whereas most Kwoniella species have fewer (11, 8, 5, or even as few as 3). Reduced chromosome number in Kwoniella is associated with formation of giant chromosomes (up to 18 Mb) through repeated chromosome fusion events, each marked by a pericentric inversion and centromere loss. While similar chromosome inversion-fusion patterns were observed in all Kwoniella species with fewer than 14 chromosomes, no such pattern was detected in Cryptococcus. Instead, Cryptococcus species with less than 14 chromosomes showed reductions primarily through rearrangements associated with the loss of repeat-rich centromeres. Additionally, Cryptococcus genomes exhibited frequent interchromosomal translocations, including intercentromeric recombination facilitated by transposons shared between centromeres. Overall, our findings advance our understanding of genetic changes possibly associated with pathogenicity in Cryptococcus and provide a foundation to elucidate mechanisms of centromere loss and chromosome fusion driving distinct karyotypes in closely related fungal species, including prominent global human pathogens.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.3002682</identifier><identifier>PMID: 38843310</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology and Life Sciences ; Centromeres ; Chromosome number ; Chromosome translocations ; Chromosomes ; Computer and Information Sciences ; Cryptococcus ; Evolution ; Fungi ; Gene transfer ; Genes ; Genetic aspects ; Genetic diversity ; Genomes ; Genomic analysis ; Genomics ; Health aspects ; Horizontal transfer ; Infectious diseases ; Inversion ; Karyotypes ; Medicine and Health Sciences ; Microbiological research ; Natural history ; Pathogenesis ; Pathogenicity ; Pathogens ; RNA polymerase ; Species ; Synteny ; Trajectory analysis ; Transposons ; Virulence</subject><ispartof>PLoS biology, 2024-06, Vol.22 (6), p.e3002682</ispartof><rights>Copyright: © 2024 Coelho et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Coelho et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Coelho et al 2024 Coelho et al</rights><rights>2024 Coelho et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c645t-4a6a9db650955e4d312cea18824bda988049698c4452b78030dcb7abf32e7f113</cites><orcidid>0000-0002-2895-1153 ; 0000-0002-5778-960X ; 0000-0001-6369-5995 ; 0000-0002-5716-0561</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11185503/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11185503/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38843310$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Coelho, Marco A</creatorcontrib><creatorcontrib>David-Palma, Márcia</creatorcontrib><creatorcontrib>Shea, Terrance</creatorcontrib><creatorcontrib>Bowers, Katharine</creatorcontrib><creatorcontrib>McGinley-Smith, Sage</creatorcontrib><creatorcontrib>Mohammad, Arman W</creatorcontrib><creatorcontrib>Gnirke, Andreas</creatorcontrib><creatorcontrib>Yurkov, Andrey M</creatorcontrib><creatorcontrib>Nowrousian, Minou</creatorcontrib><creatorcontrib>Sun, Sheng</creatorcontrib><creatorcontrib>Cuomo, Christina A</creatorcontrib><creatorcontrib>Heitman, Joseph</creatorcontrib><title>Comparative genomics of the closely related fungal genera Cryptococcus and Kwoniella reveals karyotype dynamics and suggests evolutionary mechanisms of pathogenesis</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>In exploring the evolutionary trajectories of both pathogenesis and karyotype dynamics in fungi, we conducted a large-scale comparative genomic analysis spanning the Cryptococcus genus, encompassing both global human fungal pathogens and nonpathogenic species, and related species from the sister genus Kwoniella. Chromosome-level genome assemblies were generated for multiple species, covering virtually all known diversity within these genera. Although Cryptococcus and Kwoniella have comparable genome sizes (about 19.2 and 22.9 Mb) and similar gene content, hinting at preadaptive pathogenic potential, our analysis found evidence of gene gain (via horizontal gene transfer) and gene loss in pathogenic Cryptococcus species, which might represent evolutionary signatures of pathogenic development. Genome analysis also revealed a significant variation in chromosome number and structure between the 2 genera. By combining synteny analysis and experimental centromere validation, we found that most Cryptococcus species have 14 chromosomes, whereas most Kwoniella species have fewer (11, 8, 5, or even as few as 3). Reduced chromosome number in Kwoniella is associated with formation of giant chromosomes (up to 18 Mb) through repeated chromosome fusion events, each marked by a pericentric inversion and centromere loss. While similar chromosome inversion-fusion patterns were observed in all Kwoniella species with fewer than 14 chromosomes, no such pattern was detected in Cryptococcus. Instead, Cryptococcus species with less than 14 chromosomes showed reductions primarily through rearrangements associated with the loss of repeat-rich centromeres. Additionally, Cryptococcus genomes exhibited frequent interchromosomal translocations, including intercentromeric recombination facilitated by transposons shared between centromeres. Overall, our findings advance our understanding of genetic changes possibly associated with pathogenicity in Cryptococcus and provide a foundation to elucidate mechanisms of centromere loss and chromosome fusion driving distinct karyotypes in closely related fungal species, including prominent global human pathogens.</description><subject>Biology and Life Sciences</subject><subject>Centromeres</subject><subject>Chromosome number</subject><subject>Chromosome translocations</subject><subject>Chromosomes</subject><subject>Computer and Information Sciences</subject><subject>Cryptococcus</subject><subject>Evolution</subject><subject>Fungi</subject><subject>Gene transfer</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic diversity</subject><subject>Genomes</subject><subject>Genomic analysis</subject><subject>Genomics</subject><subject>Health aspects</subject><subject>Horizontal transfer</subject><subject>Infectious diseases</subject><subject>Inversion</subject><subject>Karyotypes</subject><subject>Medicine and Health Sciences</subject><subject>Microbiological research</subject><subject>Natural history</subject><subject>Pathogenesis</subject><subject>Pathogenicity</subject><subject>Pathogens</subject><subject>RNA polymerase</subject><subject>Species</subject><subject>Synteny</subject><subject>Trajectory analysis</subject><subject>Transposons</subject><subject>Virulence</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVk9tu1DAQhiMEoqXwBggscQMXu9iJkzhXVbXiUFFRidOtNXEmWZfEDrazsO_Dg-K026qLegFyJEf2N_9vz3iS5CmjS5aV7PWFnZyBfjnW2i4zStNCpPeSQ5bzfFEKkd-_9X-QPPL-IjJplYqHyUEmBM8yRg-T3ys7jOAg6A2SDo0dtPLEtiSskajeeuy3xGEPARvSTqaDfsbQAVm57RisskpNnoBpyIef1mjse4gBG4Tek-_gtjZsRyTN1sCl9Az6qevQB09wY_spaGsiRwZUazDaD5f-I4S1nZ289o-TB22Uwye7-Sj5-vbNl9X7xdn5u9PVydlCFTwPCw4FVE1d5LTKc-RNxlKFwIRIed1AJQTlVVEJxXme1qWgGW1UXULdZimWLWPZUfL8SneMF5e7BHuZUVFUPGUVjcTpFdFYuJCj00M8ubSg5eWCdZ0EF7TqUZYNb-v4tS0DrnJVK1pDo5Bj1SqsZrfjndtUDxh3THDQ74nu7xi9lp3dSMaYyHOaRYWXOwVnf0wxo3LQXs0VMGin-eBFXgken0ZEX_yF3n29HRXLjFKb1kZjNYvKE0FpUdL4bCK1vIOKo8FYYmuw1XF9L-DVXkBkAv4KHUzey9PPn_6D_fjv7Pm3fZZfscpZ7x22N4lmVM4NdZ0QOTeU3DVUDHt2u0g3QdcdlP0BZUcggw</recordid><startdate>20240606</startdate><enddate>20240606</enddate><creator>Coelho, Marco A</creator><creator>David-Palma, Márcia</creator><creator>Shea, Terrance</creator><creator>Bowers, Katharine</creator><creator>McGinley-Smith, Sage</creator><creator>Mohammad, Arman W</creator><creator>Gnirke, Andreas</creator><creator>Yurkov, Andrey M</creator><creator>Nowrousian, Minou</creator><creator>Sun, Sheng</creator><creator>Cuomo, Christina A</creator><creator>Heitman, Joseph</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0002-2895-1153</orcidid><orcidid>https://orcid.org/0000-0002-5778-960X</orcidid><orcidid>https://orcid.org/0000-0001-6369-5995</orcidid><orcidid>https://orcid.org/0000-0002-5716-0561</orcidid></search><sort><creationdate>20240606</creationdate><title>Comparative genomics of the closely related fungal genera Cryptococcus and Kwoniella reveals karyotype dynamics and suggests evolutionary mechanisms of pathogenesis</title><author>Coelho, Marco A ; David-Palma, Márcia ; Shea, Terrance ; Bowers, Katharine ; McGinley-Smith, Sage ; Mohammad, Arman W ; Gnirke, Andreas ; Yurkov, Andrey M ; Nowrousian, Minou ; Sun, Sheng ; Cuomo, Christina A ; Heitman, Joseph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c645t-4a6a9db650955e4d312cea18824bda988049698c4452b78030dcb7abf32e7f113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biology and Life Sciences</topic><topic>Centromeres</topic><topic>Chromosome number</topic><topic>Chromosome translocations</topic><topic>Chromosomes</topic><topic>Computer and Information Sciences</topic><topic>Cryptococcus</topic><topic>Evolution</topic><topic>Fungi</topic><topic>Gene transfer</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic diversity</topic><topic>Genomes</topic><topic>Genomic analysis</topic><topic>Genomics</topic><topic>Health aspects</topic><topic>Horizontal transfer</topic><topic>Infectious diseases</topic><topic>Inversion</topic><topic>Karyotypes</topic><topic>Medicine and Health Sciences</topic><topic>Microbiological research</topic><topic>Natural history</topic><topic>Pathogenesis</topic><topic>Pathogenicity</topic><topic>Pathogens</topic><topic>RNA polymerase</topic><topic>Species</topic><topic>Synteny</topic><topic>Trajectory analysis</topic><topic>Transposons</topic><topic>Virulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coelho, Marco A</creatorcontrib><creatorcontrib>David-Palma, Márcia</creatorcontrib><creatorcontrib>Shea, Terrance</creatorcontrib><creatorcontrib>Bowers, Katharine</creatorcontrib><creatorcontrib>McGinley-Smith, Sage</creatorcontrib><creatorcontrib>Mohammad, Arman W</creatorcontrib><creatorcontrib>Gnirke, Andreas</creatorcontrib><creatorcontrib>Yurkov, Andrey M</creatorcontrib><creatorcontrib>Nowrousian, Minou</creatorcontrib><creatorcontrib>Sun, Sheng</creatorcontrib><creatorcontrib>Cuomo, Christina A</creatorcontrib><creatorcontrib>Heitman, Joseph</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coelho, Marco A</au><au>David-Palma, Márcia</au><au>Shea, Terrance</au><au>Bowers, Katharine</au><au>McGinley-Smith, Sage</au><au>Mohammad, Arman W</au><au>Gnirke, Andreas</au><au>Yurkov, Andrey M</au><au>Nowrousian, Minou</au><au>Sun, Sheng</au><au>Cuomo, Christina A</au><au>Heitman, Joseph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative genomics of the closely related fungal genera Cryptococcus and Kwoniella reveals karyotype dynamics and suggests evolutionary mechanisms of pathogenesis</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2024-06-06</date><risdate>2024</risdate><volume>22</volume><issue>6</issue><spage>e3002682</spage><pages>e3002682-</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>In exploring the evolutionary trajectories of both pathogenesis and karyotype dynamics in fungi, we conducted a large-scale comparative genomic analysis spanning the Cryptococcus genus, encompassing both global human fungal pathogens and nonpathogenic species, and related species from the sister genus Kwoniella. Chromosome-level genome assemblies were generated for multiple species, covering virtually all known diversity within these genera. Although Cryptococcus and Kwoniella have comparable genome sizes (about 19.2 and 22.9 Mb) and similar gene content, hinting at preadaptive pathogenic potential, our analysis found evidence of gene gain (via horizontal gene transfer) and gene loss in pathogenic Cryptococcus species, which might represent evolutionary signatures of pathogenic development. Genome analysis also revealed a significant variation in chromosome number and structure between the 2 genera. By combining synteny analysis and experimental centromere validation, we found that most Cryptococcus species have 14 chromosomes, whereas most Kwoniella species have fewer (11, 8, 5, or even as few as 3). Reduced chromosome number in Kwoniella is associated with formation of giant chromosomes (up to 18 Mb) through repeated chromosome fusion events, each marked by a pericentric inversion and centromere loss. While similar chromosome inversion-fusion patterns were observed in all Kwoniella species with fewer than 14 chromosomes, no such pattern was detected in Cryptococcus. Instead, Cryptococcus species with less than 14 chromosomes showed reductions primarily through rearrangements associated with the loss of repeat-rich centromeres. Additionally, Cryptococcus genomes exhibited frequent interchromosomal translocations, including intercentromeric recombination facilitated by transposons shared between centromeres. Overall, our findings advance our understanding of genetic changes possibly associated with pathogenicity in Cryptococcus and provide a foundation to elucidate mechanisms of centromere loss and chromosome fusion driving distinct karyotypes in closely related fungal species, including prominent global human pathogens.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>38843310</pmid><doi>10.1371/journal.pbio.3002682</doi><orcidid>https://orcid.org/0000-0002-2895-1153</orcidid><orcidid>https://orcid.org/0000-0002-5778-960X</orcidid><orcidid>https://orcid.org/0000-0001-6369-5995</orcidid><orcidid>https://orcid.org/0000-0002-5716-0561</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-7885 |
ispartof | PLoS biology, 2024-06, Vol.22 (6), p.e3002682 |
issn | 1545-7885 1544-9173 1545-7885 |
language | eng |
recordid | cdi_plos_journals_3086942190 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Public Library of Science (PLoS) |
subjects | Biology and Life Sciences Centromeres Chromosome number Chromosome translocations Chromosomes Computer and Information Sciences Cryptococcus Evolution Fungi Gene transfer Genes Genetic aspects Genetic diversity Genomes Genomic analysis Genomics Health aspects Horizontal transfer Infectious diseases Inversion Karyotypes Medicine and Health Sciences Microbiological research Natural history Pathogenesis Pathogenicity Pathogens RNA polymerase Species Synteny Trajectory analysis Transposons Virulence |
title | Comparative genomics of the closely related fungal genera Cryptococcus and Kwoniella reveals karyotype dynamics and suggests evolutionary mechanisms of pathogenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A26%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20genomics%20of%20the%20closely%20related%20fungal%20genera%20Cryptococcus%20and%20Kwoniella%20reveals%20karyotype%20dynamics%20and%20suggests%20evolutionary%20mechanisms%20of%20pathogenesis&rft.jtitle=PLoS%20biology&rft.au=Coelho,%20Marco%20A&rft.date=2024-06-06&rft.volume=22&rft.issue=6&rft.spage=e3002682&rft.pages=e3002682-&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.3002682&rft_dat=%3Cgale_plos_%3EA800670433%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086942190&rft_id=info:pmid/38843310&rft_galeid=A800670433&rft_doaj_id=oai_doaj_org_article_7d4fb4fbff1a4c5cbc0badce4e9fce91&rfr_iscdi=true |