Kalman filtering to reduce measurement noise of sample entropy: An electroencephalographic study

In the analysis of electroencephalography (EEG), entropy can be used to quantify the rate of generation of new information. Entropy has long been known to suffer from variance that arises from its calculation. From a sensor's perspective, calculation of entropy from a period of EEG recording ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2024-07, Vol.19 (7), p.e0305872
Hauptverfasser: Zhang, Nan, Zhai, Yawen, Li, Yan, Zhou, Jiayu, Zhai, Mingming, Tang, Chi, Xie, Kangning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page e0305872
container_title PloS one
container_volume 19
creator Zhang, Nan
Zhai, Yawen
Li, Yan
Zhou, Jiayu
Zhai, Mingming
Tang, Chi
Xie, Kangning
description In the analysis of electroencephalography (EEG), entropy can be used to quantify the rate of generation of new information. Entropy has long been known to suffer from variance that arises from its calculation. From a sensor's perspective, calculation of entropy from a period of EEG recording can be treated as physical measurement, which suffers from measurement noise. We showed the feasibility of using Kalman filtering to reduce the variance of entropy for simulated signals as well as real-world EEG recordings. In addition, we also manifested that Kalman filtering was less time-consuming than moving average, and had better performance than moving average and exponentially weighted moving average. In conclusion, we have treated entropy as a physical measure and successfully applied the conventional Kalman filtering with fixed hyperparameters. Kalman filtering is expected to be used to reduce measurement noise when continuous entropy estimation (for example anaesthesia monitoring) is essential with high accuracy and low time-consumption.
doi_str_mv 10.1371/journal.pone.0305872
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3085948968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A802992647</galeid><doaj_id>oai_doaj_org_article_3a16118598b24edca975e0bd597b272d</doaj_id><sourcerecordid>A802992647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c572t-36d5f298fc9b0a99fd9fdfbbf3197290f9e814e7bdf412f6ff3da5e504d1c9a03</originalsourceid><addsrcrecordid>eNqNk1uL1DAUx4so7rr6DUQLgujDjLn0Fl9kWLwMLix4e41pctLJkiY1acX59mZ2usuM7IO00DT5_f8nOTkny55itMS0xm-u_BScsMvBO1giisqmJveyU8woWVQE0fsH45PsUYxXCJW0qaqH2QllqC5QTU6zn5-F7YXLtbEjBOO6fPR5ADVJyHsQcQrQgxtz502E3Os8in6wkKe54Ift23zlcrAg0x84CcNGWN8FMWyMzOM4qe3j7IEWNsKT-XuWff_w_tv5p8XF5cf1-epiIcuajAtaqVIT1mjJWiQY0yq9um01xawmDGkGDS6gbpUuMNGV1lSJEkpUKCyZQPQse773HayPfE5O5BQ1JSsaVjWJWO8J5cUVH4LpRdhyLwy_nvCh4yKMRlrgVOAK46RsWlKAkoLVJaBWlaxuSU1U8no3R5vaPgG7dAh7ZHq84syGd_43x5gk26pODq9mh-B_TRBH3psowVrhwE_XG69Q2gTFCX3xD3r38WaqE-kExmmfAsudKV81iDBGqmIXdnkHlR4FvZGplFIhwLHg9ZEgMSP8GTsxxcjXX7_8P3v545h9ecBuQNhxE72dRuNdPAaLPSiDjzGAvs0yRnzXCTfZ4LtO4HMnJNmzwxu6Fd2UPv0LIwwE_w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3085948968</pqid></control><display><type>article</type><title>Kalman filtering to reduce measurement noise of sample entropy: An electroencephalographic study</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhang, Nan ; Zhai, Yawen ; Li, Yan ; Zhou, Jiayu ; Zhai, Mingming ; Tang, Chi ; Xie, Kangning</creator><contributor>Tigrini, Andrea</contributor><creatorcontrib>Zhang, Nan ; Zhai, Yawen ; Li, Yan ; Zhou, Jiayu ; Zhai, Mingming ; Tang, Chi ; Xie, Kangning ; Tigrini, Andrea</creatorcontrib><description>In the analysis of electroencephalography (EEG), entropy can be used to quantify the rate of generation of new information. Entropy has long been known to suffer from variance that arises from its calculation. From a sensor's perspective, calculation of entropy from a period of EEG recording can be treated as physical measurement, which suffers from measurement noise. We showed the feasibility of using Kalman filtering to reduce the variance of entropy for simulated signals as well as real-world EEG recordings. In addition, we also manifested that Kalman filtering was less time-consuming than moving average, and had better performance than moving average and exponentially weighted moving average. In conclusion, we have treated entropy as a physical measure and successfully applied the conventional Kalman filtering with fixed hyperparameters. Kalman filtering is expected to be used to reduce measurement noise when continuous entropy estimation (for example anaesthesia monitoring) is essential with high accuracy and low time-consumption.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0305872</identifier><identifier>PMID: 39074072</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Anesthesia ; Biology and Life Sciences ; Computer Simulation ; Convulsions &amp; seizures ; Datasets ; EEG ; Electroencephalography ; Electroencephalography - methods ; Engineering and Technology ; Entropy ; Epilepsy ; Humans ; Kalman filters ; Measurement ; Medicine and Health Sciences ; Noise control ; Noise measurement ; Noise monitoring ; Noise reduction ; Pediatrics ; Physical Sciences ; Power ; Research and Analysis Methods ; Signal Processing, Computer-Assisted ; Signal-To-Noise Ratio ; Sleep ; Time measurement ; Time series ; Variance analysis</subject><ispartof>PloS one, 2024-07, Vol.19 (7), p.e0305872</ispartof><rights>Copyright: © 2024 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Zhang et al 2024 Zhang et al</rights><rights>2024 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c572t-36d5f298fc9b0a99fd9fdfbbf3197290f9e814e7bdf412f6ff3da5e504d1c9a03</cites><orcidid>0000-0002-6031-8489 ; 0000-0001-9793-2231</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285967/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285967/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39074072$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Tigrini, Andrea</contributor><creatorcontrib>Zhang, Nan</creatorcontrib><creatorcontrib>Zhai, Yawen</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Zhou, Jiayu</creatorcontrib><creatorcontrib>Zhai, Mingming</creatorcontrib><creatorcontrib>Tang, Chi</creatorcontrib><creatorcontrib>Xie, Kangning</creatorcontrib><title>Kalman filtering to reduce measurement noise of sample entropy: An electroencephalographic study</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In the analysis of electroencephalography (EEG), entropy can be used to quantify the rate of generation of new information. Entropy has long been known to suffer from variance that arises from its calculation. From a sensor's perspective, calculation of entropy from a period of EEG recording can be treated as physical measurement, which suffers from measurement noise. We showed the feasibility of using Kalman filtering to reduce the variance of entropy for simulated signals as well as real-world EEG recordings. In addition, we also manifested that Kalman filtering was less time-consuming than moving average, and had better performance than moving average and exponentially weighted moving average. In conclusion, we have treated entropy as a physical measure and successfully applied the conventional Kalman filtering with fixed hyperparameters. Kalman filtering is expected to be used to reduce measurement noise when continuous entropy estimation (for example anaesthesia monitoring) is essential with high accuracy and low time-consumption.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Anesthesia</subject><subject>Biology and Life Sciences</subject><subject>Computer Simulation</subject><subject>Convulsions &amp; seizures</subject><subject>Datasets</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Engineering and Technology</subject><subject>Entropy</subject><subject>Epilepsy</subject><subject>Humans</subject><subject>Kalman filters</subject><subject>Measurement</subject><subject>Medicine and Health Sciences</subject><subject>Noise control</subject><subject>Noise measurement</subject><subject>Noise monitoring</subject><subject>Noise reduction</subject><subject>Pediatrics</subject><subject>Physical Sciences</subject><subject>Power</subject><subject>Research and Analysis Methods</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Signal-To-Noise Ratio</subject><subject>Sleep</subject><subject>Time measurement</subject><subject>Time series</subject><subject>Variance analysis</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uL1DAUx4so7rr6DUQLgujDjLn0Fl9kWLwMLix4e41pctLJkiY1acX59mZ2usuM7IO00DT5_f8nOTkny55itMS0xm-u_BScsMvBO1giisqmJveyU8woWVQE0fsH45PsUYxXCJW0qaqH2QllqC5QTU6zn5-F7YXLtbEjBOO6fPR5ADVJyHsQcQrQgxtz502E3Os8in6wkKe54Ift23zlcrAg0x84CcNGWN8FMWyMzOM4qe3j7IEWNsKT-XuWff_w_tv5p8XF5cf1-epiIcuajAtaqVIT1mjJWiQY0yq9um01xawmDGkGDS6gbpUuMNGV1lSJEkpUKCyZQPQse773HayPfE5O5BQ1JSsaVjWJWO8J5cUVH4LpRdhyLwy_nvCh4yKMRlrgVOAK46RsWlKAkoLVJaBWlaxuSU1U8no3R5vaPgG7dAh7ZHq84syGd_43x5gk26pODq9mh-B_TRBH3psowVrhwE_XG69Q2gTFCX3xD3r38WaqE-kExmmfAsudKV81iDBGqmIXdnkHlR4FvZGplFIhwLHg9ZEgMSP8GTsxxcjXX7_8P3v545h9ecBuQNhxE72dRuNdPAaLPSiDjzGAvs0yRnzXCTfZ4LtO4HMnJNmzwxu6Fd2UPv0LIwwE_w</recordid><startdate>20240729</startdate><enddate>20240729</enddate><creator>Zhang, Nan</creator><creator>Zhai, Yawen</creator><creator>Li, Yan</creator><creator>Zhou, Jiayu</creator><creator>Zhai, Mingming</creator><creator>Tang, Chi</creator><creator>Xie, Kangning</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6031-8489</orcidid><orcidid>https://orcid.org/0000-0001-9793-2231</orcidid></search><sort><creationdate>20240729</creationdate><title>Kalman filtering to reduce measurement noise of sample entropy: An electroencephalographic study</title><author>Zhang, Nan ; Zhai, Yawen ; Li, Yan ; Zhou, Jiayu ; Zhai, Mingming ; Tang, Chi ; Xie, Kangning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c572t-36d5f298fc9b0a99fd9fdfbbf3197290f9e814e7bdf412f6ff3da5e504d1c9a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Anesthesia</topic><topic>Biology and Life Sciences</topic><topic>Computer Simulation</topic><topic>Convulsions &amp; seizures</topic><topic>Datasets</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Engineering and Technology</topic><topic>Entropy</topic><topic>Epilepsy</topic><topic>Humans</topic><topic>Kalman filters</topic><topic>Measurement</topic><topic>Medicine and Health Sciences</topic><topic>Noise control</topic><topic>Noise measurement</topic><topic>Noise monitoring</topic><topic>Noise reduction</topic><topic>Pediatrics</topic><topic>Physical Sciences</topic><topic>Power</topic><topic>Research and Analysis Methods</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Signal-To-Noise Ratio</topic><topic>Sleep</topic><topic>Time measurement</topic><topic>Time series</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Nan</creatorcontrib><creatorcontrib>Zhai, Yawen</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Zhou, Jiayu</creatorcontrib><creatorcontrib>Zhai, Mingming</creatorcontrib><creatorcontrib>Tang, Chi</creatorcontrib><creatorcontrib>Xie, Kangning</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Nan</au><au>Zhai, Yawen</au><au>Li, Yan</au><au>Zhou, Jiayu</au><au>Zhai, Mingming</au><au>Tang, Chi</au><au>Xie, Kangning</au><au>Tigrini, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kalman filtering to reduce measurement noise of sample entropy: An electroencephalographic study</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-07-29</date><risdate>2024</risdate><volume>19</volume><issue>7</issue><spage>e0305872</spage><pages>e0305872-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In the analysis of electroencephalography (EEG), entropy can be used to quantify the rate of generation of new information. Entropy has long been known to suffer from variance that arises from its calculation. From a sensor's perspective, calculation of entropy from a period of EEG recording can be treated as physical measurement, which suffers from measurement noise. We showed the feasibility of using Kalman filtering to reduce the variance of entropy for simulated signals as well as real-world EEG recordings. In addition, we also manifested that Kalman filtering was less time-consuming than moving average, and had better performance than moving average and exponentially weighted moving average. In conclusion, we have treated entropy as a physical measure and successfully applied the conventional Kalman filtering with fixed hyperparameters. Kalman filtering is expected to be used to reduce measurement noise when continuous entropy estimation (for example anaesthesia monitoring) is essential with high accuracy and low time-consumption.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>39074072</pmid><doi>10.1371/journal.pone.0305872</doi><tpages>e0305872</tpages><orcidid>https://orcid.org/0000-0002-6031-8489</orcidid><orcidid>https://orcid.org/0000-0001-9793-2231</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2024-07, Vol.19 (7), p.e0305872
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_3085948968
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Analysis
Anesthesia
Biology and Life Sciences
Computer Simulation
Convulsions & seizures
Datasets
EEG
Electroencephalography
Electroencephalography - methods
Engineering and Technology
Entropy
Epilepsy
Humans
Kalman filters
Measurement
Medicine and Health Sciences
Noise control
Noise measurement
Noise monitoring
Noise reduction
Pediatrics
Physical Sciences
Power
Research and Analysis Methods
Signal Processing, Computer-Assisted
Signal-To-Noise Ratio
Sleep
Time measurement
Time series
Variance analysis
title Kalman filtering to reduce measurement noise of sample entropy: An electroencephalographic study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A04%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kalman%20filtering%20to%20reduce%20measurement%20noise%20of%20sample%20entropy:%20An%20electroencephalographic%20study&rft.jtitle=PloS%20one&rft.au=Zhang,%20Nan&rft.date=2024-07-29&rft.volume=19&rft.issue=7&rft.spage=e0305872&rft.pages=e0305872-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0305872&rft_dat=%3Cgale_plos_%3EA802992647%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3085948968&rft_id=info:pmid/39074072&rft_galeid=A802992647&rft_doaj_id=oai_doaj_org_article_3a16118598b24edca975e0bd597b272d&rfr_iscdi=true