Kalman filtering to reduce measurement noise of sample entropy: An electroencephalographic study
In the analysis of electroencephalography (EEG), entropy can be used to quantify the rate of generation of new information. Entropy has long been known to suffer from variance that arises from its calculation. From a sensor's perspective, calculation of entropy from a period of EEG recording ca...
Gespeichert in:
Veröffentlicht in: | PloS one 2024-07, Vol.19 (7), p.e0305872 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | e0305872 |
container_title | PloS one |
container_volume | 19 |
creator | Zhang, Nan Zhai, Yawen Li, Yan Zhou, Jiayu Zhai, Mingming Tang, Chi Xie, Kangning |
description | In the analysis of electroencephalography (EEG), entropy can be used to quantify the rate of generation of new information. Entropy has long been known to suffer from variance that arises from its calculation. From a sensor's perspective, calculation of entropy from a period of EEG recording can be treated as physical measurement, which suffers from measurement noise. We showed the feasibility of using Kalman filtering to reduce the variance of entropy for simulated signals as well as real-world EEG recordings. In addition, we also manifested that Kalman filtering was less time-consuming than moving average, and had better performance than moving average and exponentially weighted moving average. In conclusion, we have treated entropy as a physical measure and successfully applied the conventional Kalman filtering with fixed hyperparameters. Kalman filtering is expected to be used to reduce measurement noise when continuous entropy estimation (for example anaesthesia monitoring) is essential with high accuracy and low time-consumption. |
doi_str_mv | 10.1371/journal.pone.0305872 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3085948968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A802992647</galeid><doaj_id>oai_doaj_org_article_3a16118598b24edca975e0bd597b272d</doaj_id><sourcerecordid>A802992647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c572t-36d5f298fc9b0a99fd9fdfbbf3197290f9e814e7bdf412f6ff3da5e504d1c9a03</originalsourceid><addsrcrecordid>eNqNk1uL1DAUx4so7rr6DUQLgujDjLn0Fl9kWLwMLix4e41pctLJkiY1acX59mZ2usuM7IO00DT5_f8nOTkny55itMS0xm-u_BScsMvBO1giisqmJveyU8woWVQE0fsH45PsUYxXCJW0qaqH2QllqC5QTU6zn5-F7YXLtbEjBOO6fPR5ADVJyHsQcQrQgxtz502E3Os8in6wkKe54Ift23zlcrAg0x84CcNGWN8FMWyMzOM4qe3j7IEWNsKT-XuWff_w_tv5p8XF5cf1-epiIcuajAtaqVIT1mjJWiQY0yq9um01xawmDGkGDS6gbpUuMNGV1lSJEkpUKCyZQPQse773HayPfE5O5BQ1JSsaVjWJWO8J5cUVH4LpRdhyLwy_nvCh4yKMRlrgVOAK46RsWlKAkoLVJaBWlaxuSU1U8no3R5vaPgG7dAh7ZHq84syGd_43x5gk26pODq9mh-B_TRBH3psowVrhwE_XG69Q2gTFCX3xD3r38WaqE-kExmmfAsudKV81iDBGqmIXdnkHlR4FvZGplFIhwLHg9ZEgMSP8GTsxxcjXX7_8P3v545h9ecBuQNhxE72dRuNdPAaLPSiDjzGAvs0yRnzXCTfZ4LtO4HMnJNmzwxu6Fd2UPv0LIwwE_w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3085948968</pqid></control><display><type>article</type><title>Kalman filtering to reduce measurement noise of sample entropy: An electroencephalographic study</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhang, Nan ; Zhai, Yawen ; Li, Yan ; Zhou, Jiayu ; Zhai, Mingming ; Tang, Chi ; Xie, Kangning</creator><contributor>Tigrini, Andrea</contributor><creatorcontrib>Zhang, Nan ; Zhai, Yawen ; Li, Yan ; Zhou, Jiayu ; Zhai, Mingming ; Tang, Chi ; Xie, Kangning ; Tigrini, Andrea</creatorcontrib><description>In the analysis of electroencephalography (EEG), entropy can be used to quantify the rate of generation of new information. Entropy has long been known to suffer from variance that arises from its calculation. From a sensor's perspective, calculation of entropy from a period of EEG recording can be treated as physical measurement, which suffers from measurement noise. We showed the feasibility of using Kalman filtering to reduce the variance of entropy for simulated signals as well as real-world EEG recordings. In addition, we also manifested that Kalman filtering was less time-consuming than moving average, and had better performance than moving average and exponentially weighted moving average. In conclusion, we have treated entropy as a physical measure and successfully applied the conventional Kalman filtering with fixed hyperparameters. Kalman filtering is expected to be used to reduce measurement noise when continuous entropy estimation (for example anaesthesia monitoring) is essential with high accuracy and low time-consumption.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0305872</identifier><identifier>PMID: 39074072</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Anesthesia ; Biology and Life Sciences ; Computer Simulation ; Convulsions & seizures ; Datasets ; EEG ; Electroencephalography ; Electroencephalography - methods ; Engineering and Technology ; Entropy ; Epilepsy ; Humans ; Kalman filters ; Measurement ; Medicine and Health Sciences ; Noise control ; Noise measurement ; Noise monitoring ; Noise reduction ; Pediatrics ; Physical Sciences ; Power ; Research and Analysis Methods ; Signal Processing, Computer-Assisted ; Signal-To-Noise Ratio ; Sleep ; Time measurement ; Time series ; Variance analysis</subject><ispartof>PloS one, 2024-07, Vol.19 (7), p.e0305872</ispartof><rights>Copyright: © 2024 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Zhang et al 2024 Zhang et al</rights><rights>2024 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c572t-36d5f298fc9b0a99fd9fdfbbf3197290f9e814e7bdf412f6ff3da5e504d1c9a03</cites><orcidid>0000-0002-6031-8489 ; 0000-0001-9793-2231</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285967/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285967/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39074072$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Tigrini, Andrea</contributor><creatorcontrib>Zhang, Nan</creatorcontrib><creatorcontrib>Zhai, Yawen</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Zhou, Jiayu</creatorcontrib><creatorcontrib>Zhai, Mingming</creatorcontrib><creatorcontrib>Tang, Chi</creatorcontrib><creatorcontrib>Xie, Kangning</creatorcontrib><title>Kalman filtering to reduce measurement noise of sample entropy: An electroencephalographic study</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In the analysis of electroencephalography (EEG), entropy can be used to quantify the rate of generation of new information. Entropy has long been known to suffer from variance that arises from its calculation. From a sensor's perspective, calculation of entropy from a period of EEG recording can be treated as physical measurement, which suffers from measurement noise. We showed the feasibility of using Kalman filtering to reduce the variance of entropy for simulated signals as well as real-world EEG recordings. In addition, we also manifested that Kalman filtering was less time-consuming than moving average, and had better performance than moving average and exponentially weighted moving average. In conclusion, we have treated entropy as a physical measure and successfully applied the conventional Kalman filtering with fixed hyperparameters. Kalman filtering is expected to be used to reduce measurement noise when continuous entropy estimation (for example anaesthesia monitoring) is essential with high accuracy and low time-consumption.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Anesthesia</subject><subject>Biology and Life Sciences</subject><subject>Computer Simulation</subject><subject>Convulsions & seizures</subject><subject>Datasets</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Engineering and Technology</subject><subject>Entropy</subject><subject>Epilepsy</subject><subject>Humans</subject><subject>Kalman filters</subject><subject>Measurement</subject><subject>Medicine and Health Sciences</subject><subject>Noise control</subject><subject>Noise measurement</subject><subject>Noise monitoring</subject><subject>Noise reduction</subject><subject>Pediatrics</subject><subject>Physical Sciences</subject><subject>Power</subject><subject>Research and Analysis Methods</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Signal-To-Noise Ratio</subject><subject>Sleep</subject><subject>Time measurement</subject><subject>Time series</subject><subject>Variance analysis</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uL1DAUx4so7rr6DUQLgujDjLn0Fl9kWLwMLix4e41pctLJkiY1acX59mZ2usuM7IO00DT5_f8nOTkny55itMS0xm-u_BScsMvBO1giisqmJveyU8woWVQE0fsH45PsUYxXCJW0qaqH2QllqC5QTU6zn5-F7YXLtbEjBOO6fPR5ADVJyHsQcQrQgxtz502E3Os8in6wkKe54Ift23zlcrAg0x84CcNGWN8FMWyMzOM4qe3j7IEWNsKT-XuWff_w_tv5p8XF5cf1-epiIcuajAtaqVIT1mjJWiQY0yq9um01xawmDGkGDS6gbpUuMNGV1lSJEkpUKCyZQPQse773HayPfE5O5BQ1JSsaVjWJWO8J5cUVH4LpRdhyLwy_nvCh4yKMRlrgVOAK46RsWlKAkoLVJaBWlaxuSU1U8no3R5vaPgG7dAh7ZHq84syGd_43x5gk26pODq9mh-B_TRBH3psowVrhwE_XG69Q2gTFCX3xD3r38WaqE-kExmmfAsudKV81iDBGqmIXdnkHlR4FvZGplFIhwLHg9ZEgMSP8GTsxxcjXX7_8P3v545h9ecBuQNhxE72dRuNdPAaLPSiDjzGAvs0yRnzXCTfZ4LtO4HMnJNmzwxu6Fd2UPv0LIwwE_w</recordid><startdate>20240729</startdate><enddate>20240729</enddate><creator>Zhang, Nan</creator><creator>Zhai, Yawen</creator><creator>Li, Yan</creator><creator>Zhou, Jiayu</creator><creator>Zhai, Mingming</creator><creator>Tang, Chi</creator><creator>Xie, Kangning</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6031-8489</orcidid><orcidid>https://orcid.org/0000-0001-9793-2231</orcidid></search><sort><creationdate>20240729</creationdate><title>Kalman filtering to reduce measurement noise of sample entropy: An electroencephalographic study</title><author>Zhang, Nan ; Zhai, Yawen ; Li, Yan ; Zhou, Jiayu ; Zhai, Mingming ; Tang, Chi ; Xie, Kangning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c572t-36d5f298fc9b0a99fd9fdfbbf3197290f9e814e7bdf412f6ff3da5e504d1c9a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Anesthesia</topic><topic>Biology and Life Sciences</topic><topic>Computer Simulation</topic><topic>Convulsions & seizures</topic><topic>Datasets</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Engineering and Technology</topic><topic>Entropy</topic><topic>Epilepsy</topic><topic>Humans</topic><topic>Kalman filters</topic><topic>Measurement</topic><topic>Medicine and Health Sciences</topic><topic>Noise control</topic><topic>Noise measurement</topic><topic>Noise monitoring</topic><topic>Noise reduction</topic><topic>Pediatrics</topic><topic>Physical Sciences</topic><topic>Power</topic><topic>Research and Analysis Methods</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Signal-To-Noise Ratio</topic><topic>Sleep</topic><topic>Time measurement</topic><topic>Time series</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Nan</creatorcontrib><creatorcontrib>Zhai, Yawen</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Zhou, Jiayu</creatorcontrib><creatorcontrib>Zhai, Mingming</creatorcontrib><creatorcontrib>Tang, Chi</creatorcontrib><creatorcontrib>Xie, Kangning</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Nan</au><au>Zhai, Yawen</au><au>Li, Yan</au><au>Zhou, Jiayu</au><au>Zhai, Mingming</au><au>Tang, Chi</au><au>Xie, Kangning</au><au>Tigrini, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kalman filtering to reduce measurement noise of sample entropy: An electroencephalographic study</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-07-29</date><risdate>2024</risdate><volume>19</volume><issue>7</issue><spage>e0305872</spage><pages>e0305872-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In the analysis of electroencephalography (EEG), entropy can be used to quantify the rate of generation of new information. Entropy has long been known to suffer from variance that arises from its calculation. From a sensor's perspective, calculation of entropy from a period of EEG recording can be treated as physical measurement, which suffers from measurement noise. We showed the feasibility of using Kalman filtering to reduce the variance of entropy for simulated signals as well as real-world EEG recordings. In addition, we also manifested that Kalman filtering was less time-consuming than moving average, and had better performance than moving average and exponentially weighted moving average. In conclusion, we have treated entropy as a physical measure and successfully applied the conventional Kalman filtering with fixed hyperparameters. Kalman filtering is expected to be used to reduce measurement noise when continuous entropy estimation (for example anaesthesia monitoring) is essential with high accuracy and low time-consumption.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>39074072</pmid><doi>10.1371/journal.pone.0305872</doi><tpages>e0305872</tpages><orcidid>https://orcid.org/0000-0002-6031-8489</orcidid><orcidid>https://orcid.org/0000-0001-9793-2231</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2024-07, Vol.19 (7), p.e0305872 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_3085948968 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algorithms Analysis Anesthesia Biology and Life Sciences Computer Simulation Convulsions & seizures Datasets EEG Electroencephalography Electroencephalography - methods Engineering and Technology Entropy Epilepsy Humans Kalman filters Measurement Medicine and Health Sciences Noise control Noise measurement Noise monitoring Noise reduction Pediatrics Physical Sciences Power Research and Analysis Methods Signal Processing, Computer-Assisted Signal-To-Noise Ratio Sleep Time measurement Time series Variance analysis |
title | Kalman filtering to reduce measurement noise of sample entropy: An electroencephalographic study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A04%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kalman%20filtering%20to%20reduce%20measurement%20noise%20of%20sample%20entropy:%20An%20electroencephalographic%20study&rft.jtitle=PloS%20one&rft.au=Zhang,%20Nan&rft.date=2024-07-29&rft.volume=19&rft.issue=7&rft.spage=e0305872&rft.pages=e0305872-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0305872&rft_dat=%3Cgale_plos_%3EA802992647%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3085948968&rft_id=info:pmid/39074072&rft_galeid=A802992647&rft_doaj_id=oai_doaj_org_article_3a16118598b24edca975e0bd597b272d&rfr_iscdi=true |