A novel system to culture human intestinal organoids under physiological oxygen content to study microbial-host interaction

Mechanistic investigation of host-microbe interactions in the human gut are hindered by difficulty of co-culturing microbes with intestinal epithelial cells. On one hand the gut bacteria are a mix of facultative, aerotolerant or obligate anaerobes, while the intestinal epithelium requires oxygen for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2024-07, Vol.19 (7), p.e0300666
Hauptverfasser: Fofanova, Tatiana Y, Karandikar, Umesh C, Auchtung, Jennifer M, Wilson, Reid L, Valentin, Antonio J, Britton, Robert A, Grande-Allen, K Jane, Estes, Mary K, Hoffman, Kristi, Ramani, Sashirekha, Stewart, Christopher J, Petrosino, Joseph F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mechanistic investigation of host-microbe interactions in the human gut are hindered by difficulty of co-culturing microbes with intestinal epithelial cells. On one hand the gut bacteria are a mix of facultative, aerotolerant or obligate anaerobes, while the intestinal epithelium requires oxygen for growth and function. Thus, a coculture system that can recreate these contrasting oxygen requirements is critical step towards our understanding microbial-host interactions in the human gut. Here, we demonstrate Intestinal Organoid Physoxic Coculture (IOPC) system, a simple and cost-effective method for coculturing anaerobic intestinal bacteria with human intestinal organoids (HIOs). Using commensal anaerobes with varying degrees of oxygen tolerance, such as nano-aerobe Bacteroides thetaiotaomicron and strict anaerobe Blautia sp., we demonstrate that IOPC can successfully support 24-48 hours HIO-microbe coculture. The IOPC recapitulates the contrasting oxygen conditions across the intestinal epithelium seen in vivo. The IOPC cultured HIOs showed increased barrier integrity, and induced expression of immunomodulatory genes. A transcriptomic analysis suggests that HIOs from different donors show differences in the magnitude of their response to coculture with anaerobic bacteria. Thus, the IOPC system provides a robust coculture setup for investigating host-microbe interactions in complex, patient-derived intestinal tissues, that can facilitate the study of mechanisms underlying the role of the microbiome in health and disease.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0300666