Advancements in urban scene segmentation using deep learning and generative adversarial networks for accurate satellite image analysis

In the urban scene segmentation, the "image-to-image translation issue" refers to the fundamental task of transforming input images into meaningful segmentation maps, which essentially involves translating the visual information present in the input image into semantic labels for different...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2024-07, Vol.19 (7), p.e0307187
Hauptverfasser: Sangeetha, S K B, Sivakumar, M, Mathivanan, Sandeep Kumar, Rajadurai, Hariharan, Karthikeyan, P, Shah, Mohd Asif
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page e0307187
container_title PloS one
container_volume 19
creator Sangeetha, S K B
Sivakumar, M
Mathivanan, Sandeep Kumar
Rajadurai, Hariharan
Karthikeyan, P
Shah, Mohd Asif
description In the urban scene segmentation, the "image-to-image translation issue" refers to the fundamental task of transforming input images into meaningful segmentation maps, which essentially involves translating the visual information present in the input image into semantic labels for different classes. When this translation process is inaccurate or incomplete, it can lead to failed segmentation results where the model struggles to correctly classify pixels into the appropriate semantic categories. The study proposed a conditional Generative Adversarial Network (cGAN), for creating high-resolution urban maps from satellite images. The method combines semantic and spatial data using cGAN framework to produce realistic urban scenes while maintaining crucial details. To assess the performance of the proposed method, extensive experiments are performed on benchmark datasets, the ISPRS Potsdam and Vaihingen datasets. Intersection over Union (IoU) and Pixel Accuracy are two quantitative metrics used to evaluate the segmentation accuracy of the produced maps. The proposed method outperforms traditional methods with an IoU of 87% and a Pixel Accuracy of 93%. The experimental findings show that the suggested cGAN-based method performs better than traditional techniques, attaining better segmentation accuracy and generating better urban maps with finely detailed information. The suggested approach provides a framework for resolving the image-to-image translation difficulties in urban scene segmentation, demonstrating the potential of cGANs for producing excellent urban maps from satellite data.
doi_str_mv 10.1371/journal.pone.0307187
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3082558390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A801798276</galeid><doaj_id>oai_doaj_org_article_ad297cb151ee48399adf2d11db04bbd3</doaj_id><sourcerecordid>A801798276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c572t-48cc8eedea1c43ce849b07483bf2b2fa49db21d7c3ee6db70381d6b4e28e92eb3</originalsourceid><addsrcrecordid>eNqNk9tuEzEQhlcIREvhDRCshITgIsGHPXivUFVxqFSpEqdby4fZjYtjB3s30BfguZmQtEpQL5CltXf8ze-ZsaconlIyp7ylb67ilILy81UMMCectFS094pj2nE2axjh9_fWR8WjnK8IqblomofFEe8Iq3jNj4vfp3atgoElhDGXLpRT0iqU2UCAMsOwsavRRdzILgylBViVHlQKmz8VbDkgmRBZQ6nsGlJWySlfBhh_xvQ9l31MpTJmQgYV8eO9w5VbqgE9MIPr7PLj4kGvfIYnu_mk-Pr-3Zezj7OLyw_nZ6cXM1O3bJxVwhgBYEFRU3EDouo0aSvBdc8061XVWc2obQ0HaKxuCRfUNroCJqBjoPlJ8Xyru_Ixy10Js-REsLoWWBYkzreEjepKrhLGma5lVE7-NcQ0SJVGZzxIZVnXGk1rCoAxdJ2yPbOUWk0qrS1Hrbe70ya9BIs1HZPyB6KHO8Et5BDXklJWt5wwVHi1U0jxxwR5lEuHd-O9ChCnbeANq2krEH3xD3p3ejtqUJiBC33Eg81GVJ4KQttOsLZBan4HhcPC0hl8cL1D-4HD6wMHZEb4NQ5qylmef_70_-zlt0P25R67AOXHRY5-2rzIfAhWW9CkmHOC_rbKlMhNv9xUQ276Re76Bd2e7d_QrdNNg_A_h8UURg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082558390</pqid></control><display><type>article</type><title>Advancements in urban scene segmentation using deep learning and generative adversarial networks for accurate satellite image analysis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Sangeetha, S K B ; Sivakumar, M ; Mathivanan, Sandeep Kumar ; Rajadurai, Hariharan ; Karthikeyan, P ; Shah, Mohd Asif</creator><creatorcontrib>Sangeetha, S K B ; Sivakumar, M ; Mathivanan, Sandeep Kumar ; Rajadurai, Hariharan ; Karthikeyan, P ; Shah, Mohd Asif</creatorcontrib><description>In the urban scene segmentation, the "image-to-image translation issue" refers to the fundamental task of transforming input images into meaningful segmentation maps, which essentially involves translating the visual information present in the input image into semantic labels for different classes. When this translation process is inaccurate or incomplete, it can lead to failed segmentation results where the model struggles to correctly classify pixels into the appropriate semantic categories. The study proposed a conditional Generative Adversarial Network (cGAN), for creating high-resolution urban maps from satellite images. The method combines semantic and spatial data using cGAN framework to produce realistic urban scenes while maintaining crucial details. To assess the performance of the proposed method, extensive experiments are performed on benchmark datasets, the ISPRS Potsdam and Vaihingen datasets. Intersection over Union (IoU) and Pixel Accuracy are two quantitative metrics used to evaluate the segmentation accuracy of the produced maps. The proposed method outperforms traditional methods with an IoU of 87% and a Pixel Accuracy of 93%. The experimental findings show that the suggested cGAN-based method performs better than traditional techniques, attaining better segmentation accuracy and generating better urban maps with finely detailed information. The suggested approach provides a framework for resolving the image-to-image translation difficulties in urban scene segmentation, demonstrating the potential of cGANs for producing excellent urban maps from satellite data.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0307187</identifier><identifier>PMID: 39024353</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Aerial photography ; Aircraft ; Algorithms ; Artificial intelligence ; Computational linguistics ; Computer and Information Sciences ; Datasets ; Deep Learning ; Ecology and Environmental Sciences ; Engineering and Technology ; Environmental monitoring ; Generative adversarial networks ; Geospatial data ; Humans ; Image analysis ; Image processing ; Image Processing, Computer-Assisted - methods ; Image resolution ; Image segmentation ; Information processing ; Infrastructure ; Language processing ; Natural language interfaces ; Neural networks ; Neural Networks, Computer ; Performance assessment ; Physical Sciences ; Pixels ; Research and Analysis Methods ; Satellite data ; Satellite imagery ; Satellite Imagery - methods ; Satellites ; Segmentation ; Semantics ; Spatial data ; Translation ; Unmanned aerial vehicles ; Urban areas ; Urban planning ; Vegetation ; Visual tasks</subject><ispartof>PloS one, 2024-07, Vol.19 (7), p.e0307187</ispartof><rights>Copyright: © 2024 Sangeetha et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Sangeetha et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Sangeetha et al 2024 Sangeetha et al</rights><rights>2024 Sangeetha et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c572t-48cc8eedea1c43ce849b07483bf2b2fa49db21d7c3ee6db70381d6b4e28e92eb3</cites><orcidid>0000-0002-0351-9559</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11257302/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11257302/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39024353$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sangeetha, S K B</creatorcontrib><creatorcontrib>Sivakumar, M</creatorcontrib><creatorcontrib>Mathivanan, Sandeep Kumar</creatorcontrib><creatorcontrib>Rajadurai, Hariharan</creatorcontrib><creatorcontrib>Karthikeyan, P</creatorcontrib><creatorcontrib>Shah, Mohd Asif</creatorcontrib><title>Advancements in urban scene segmentation using deep learning and generative adversarial networks for accurate satellite image analysis</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In the urban scene segmentation, the "image-to-image translation issue" refers to the fundamental task of transforming input images into meaningful segmentation maps, which essentially involves translating the visual information present in the input image into semantic labels for different classes. When this translation process is inaccurate or incomplete, it can lead to failed segmentation results where the model struggles to correctly classify pixels into the appropriate semantic categories. The study proposed a conditional Generative Adversarial Network (cGAN), for creating high-resolution urban maps from satellite images. The method combines semantic and spatial data using cGAN framework to produce realistic urban scenes while maintaining crucial details. To assess the performance of the proposed method, extensive experiments are performed on benchmark datasets, the ISPRS Potsdam and Vaihingen datasets. Intersection over Union (IoU) and Pixel Accuracy are two quantitative metrics used to evaluate the segmentation accuracy of the produced maps. The proposed method outperforms traditional methods with an IoU of 87% and a Pixel Accuracy of 93%. The experimental findings show that the suggested cGAN-based method performs better than traditional techniques, attaining better segmentation accuracy and generating better urban maps with finely detailed information. The suggested approach provides a framework for resolving the image-to-image translation difficulties in urban scene segmentation, demonstrating the potential of cGANs for producing excellent urban maps from satellite data.</description><subject>Accuracy</subject><subject>Aerial photography</subject><subject>Aircraft</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Computational linguistics</subject><subject>Computer and Information Sciences</subject><subject>Datasets</subject><subject>Deep Learning</subject><subject>Ecology and Environmental Sciences</subject><subject>Engineering and Technology</subject><subject>Environmental monitoring</subject><subject>Generative adversarial networks</subject><subject>Geospatial data</subject><subject>Humans</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image resolution</subject><subject>Image segmentation</subject><subject>Information processing</subject><subject>Infrastructure</subject><subject>Language processing</subject><subject>Natural language interfaces</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Performance assessment</subject><subject>Physical Sciences</subject><subject>Pixels</subject><subject>Research and Analysis Methods</subject><subject>Satellite data</subject><subject>Satellite imagery</subject><subject>Satellite Imagery - methods</subject><subject>Satellites</subject><subject>Segmentation</subject><subject>Semantics</subject><subject>Spatial data</subject><subject>Translation</subject><subject>Unmanned aerial vehicles</subject><subject>Urban areas</subject><subject>Urban planning</subject><subject>Vegetation</subject><subject>Visual tasks</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9tuEzEQhlcIREvhDRCshITgIsGHPXivUFVxqFSpEqdby4fZjYtjB3s30BfguZmQtEpQL5CltXf8ze-ZsaconlIyp7ylb67ilILy81UMMCectFS094pj2nE2axjh9_fWR8WjnK8IqblomofFEe8Iq3jNj4vfp3atgoElhDGXLpRT0iqU2UCAMsOwsavRRdzILgylBViVHlQKmz8VbDkgmRBZQ6nsGlJWySlfBhh_xvQ9l31MpTJmQgYV8eO9w5VbqgE9MIPr7PLj4kGvfIYnu_mk-Pr-3Zezj7OLyw_nZ6cXM1O3bJxVwhgBYEFRU3EDouo0aSvBdc8061XVWc2obQ0HaKxuCRfUNroCJqBjoPlJ8Xyru_Ixy10Js-REsLoWWBYkzreEjepKrhLGma5lVE7-NcQ0SJVGZzxIZVnXGk1rCoAxdJ2yPbOUWk0qrS1Hrbe70ya9BIs1HZPyB6KHO8Et5BDXklJWt5wwVHi1U0jxxwR5lEuHd-O9ChCnbeANq2krEH3xD3p3ejtqUJiBC33Eg81GVJ4KQttOsLZBan4HhcPC0hl8cL1D-4HD6wMHZEb4NQ5qylmef_70_-zlt0P25R67AOXHRY5-2rzIfAhWW9CkmHOC_rbKlMhNv9xUQ276Re76Bd2e7d_QrdNNg_A_h8UURg</recordid><startdate>20240718</startdate><enddate>20240718</enddate><creator>Sangeetha, S K B</creator><creator>Sivakumar, M</creator><creator>Mathivanan, Sandeep Kumar</creator><creator>Rajadurai, Hariharan</creator><creator>Karthikeyan, P</creator><creator>Shah, Mohd Asif</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0351-9559</orcidid></search><sort><creationdate>20240718</creationdate><title>Advancements in urban scene segmentation using deep learning and generative adversarial networks for accurate satellite image analysis</title><author>Sangeetha, S K B ; Sivakumar, M ; Mathivanan, Sandeep Kumar ; Rajadurai, Hariharan ; Karthikeyan, P ; Shah, Mohd Asif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c572t-48cc8eedea1c43ce849b07483bf2b2fa49db21d7c3ee6db70381d6b4e28e92eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Aerial photography</topic><topic>Aircraft</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Computational linguistics</topic><topic>Computer and Information Sciences</topic><topic>Datasets</topic><topic>Deep Learning</topic><topic>Ecology and Environmental Sciences</topic><topic>Engineering and Technology</topic><topic>Environmental monitoring</topic><topic>Generative adversarial networks</topic><topic>Geospatial data</topic><topic>Humans</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image resolution</topic><topic>Image segmentation</topic><topic>Information processing</topic><topic>Infrastructure</topic><topic>Language processing</topic><topic>Natural language interfaces</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Performance assessment</topic><topic>Physical Sciences</topic><topic>Pixels</topic><topic>Research and Analysis Methods</topic><topic>Satellite data</topic><topic>Satellite imagery</topic><topic>Satellite Imagery - methods</topic><topic>Satellites</topic><topic>Segmentation</topic><topic>Semantics</topic><topic>Spatial data</topic><topic>Translation</topic><topic>Unmanned aerial vehicles</topic><topic>Urban areas</topic><topic>Urban planning</topic><topic>Vegetation</topic><topic>Visual tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sangeetha, S K B</creatorcontrib><creatorcontrib>Sivakumar, M</creatorcontrib><creatorcontrib>Mathivanan, Sandeep Kumar</creatorcontrib><creatorcontrib>Rajadurai, Hariharan</creatorcontrib><creatorcontrib>Karthikeyan, P</creatorcontrib><creatorcontrib>Shah, Mohd Asif</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sangeetha, S K B</au><au>Sivakumar, M</au><au>Mathivanan, Sandeep Kumar</au><au>Rajadurai, Hariharan</au><au>Karthikeyan, P</au><au>Shah, Mohd Asif</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advancements in urban scene segmentation using deep learning and generative adversarial networks for accurate satellite image analysis</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-07-18</date><risdate>2024</risdate><volume>19</volume><issue>7</issue><spage>e0307187</spage><pages>e0307187-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In the urban scene segmentation, the "image-to-image translation issue" refers to the fundamental task of transforming input images into meaningful segmentation maps, which essentially involves translating the visual information present in the input image into semantic labels for different classes. When this translation process is inaccurate or incomplete, it can lead to failed segmentation results where the model struggles to correctly classify pixels into the appropriate semantic categories. The study proposed a conditional Generative Adversarial Network (cGAN), for creating high-resolution urban maps from satellite images. The method combines semantic and spatial data using cGAN framework to produce realistic urban scenes while maintaining crucial details. To assess the performance of the proposed method, extensive experiments are performed on benchmark datasets, the ISPRS Potsdam and Vaihingen datasets. Intersection over Union (IoU) and Pixel Accuracy are two quantitative metrics used to evaluate the segmentation accuracy of the produced maps. The proposed method outperforms traditional methods with an IoU of 87% and a Pixel Accuracy of 93%. The experimental findings show that the suggested cGAN-based method performs better than traditional techniques, attaining better segmentation accuracy and generating better urban maps with finely detailed information. The suggested approach provides a framework for resolving the image-to-image translation difficulties in urban scene segmentation, demonstrating the potential of cGANs for producing excellent urban maps from satellite data.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>39024353</pmid><doi>10.1371/journal.pone.0307187</doi><tpages>e0307187</tpages><orcidid>https://orcid.org/0000-0002-0351-9559</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2024-07, Vol.19 (7), p.e0307187
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_3082558390
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Accuracy
Aerial photography
Aircraft
Algorithms
Artificial intelligence
Computational linguistics
Computer and Information Sciences
Datasets
Deep Learning
Ecology and Environmental Sciences
Engineering and Technology
Environmental monitoring
Generative adversarial networks
Geospatial data
Humans
Image analysis
Image processing
Image Processing, Computer-Assisted - methods
Image resolution
Image segmentation
Information processing
Infrastructure
Language processing
Natural language interfaces
Neural networks
Neural Networks, Computer
Performance assessment
Physical Sciences
Pixels
Research and Analysis Methods
Satellite data
Satellite imagery
Satellite Imagery - methods
Satellites
Segmentation
Semantics
Spatial data
Translation
Unmanned aerial vehicles
Urban areas
Urban planning
Vegetation
Visual tasks
title Advancements in urban scene segmentation using deep learning and generative adversarial networks for accurate satellite image analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A20%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advancements%20in%20urban%20scene%20segmentation%20using%20deep%20learning%20and%20generative%20adversarial%20networks%20for%20accurate%20satellite%20image%20analysis&rft.jtitle=PloS%20one&rft.au=Sangeetha,%20S%20K%20B&rft.date=2024-07-18&rft.volume=19&rft.issue=7&rft.spage=e0307187&rft.pages=e0307187-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0307187&rft_dat=%3Cgale_plos_%3EA801798276%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3082558390&rft_id=info:pmid/39024353&rft_galeid=A801798276&rft_doaj_id=oai_doaj_org_article_ad297cb151ee48399adf2d11db04bbd3&rfr_iscdi=true