Prediction of future visceral adiposity and application to cancer research: The Multiethnic Cohort Study
We previously developed a prediction score for MRI-quantified abdominal visceral adipose tissue (VAT) based on concurrent measurements of height, body mass index (BMI), and nine blood biomarkers, for optimal performance in five racial/ethnic groups. Here we evaluated the VAT score for prediction of...
Gespeichert in:
Veröffentlicht in: | PloS one 2024-07, Vol.19 (7), p.e0306606 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | e0306606 |
container_title | PloS one |
container_volume | 19 |
creator | Wilkens, Lynne R Castelfranco, Ann M Monroe, Kristine R Kristal, Bruce S Cheng, Iona Maskarinec, Gertraud Hullar, Meredith A Lampe, Johanna W Shepherd, John A Franke, Adrian A Ernst, Thomas Le Marchand, Loïc Lim, Unhee |
description | We previously developed a prediction score for MRI-quantified abdominal visceral adipose tissue (VAT) based on concurrent measurements of height, body mass index (BMI), and nine blood biomarkers, for optimal performance in five racial/ethnic groups. Here we evaluated the VAT score for prediction of future VAT and examined if enhancement with additional biomarkers, lifestyle behavior information, and medical history improves the prediction.
We examined 500 participants from the Multiethnic Cohort (MEC) with detailed data (age 50-66) collected 10 years prior to their MRI assessment of VAT. We generated three forecasted VAT prediction models: first by applying the original VAT equation to the past data on the predictors ("original"), second by refitting the past data on anthropometry and biomarkers ("refit"), and third by building a new prediction model based on the past data enhanced with lifestyle and medical history ("enhanced"). We compared the forecasted prediction scores to future VAT using the coefficient of determination (R2). In independent nested case-control data in MEC, we applied the concurrent and forecasted VAT models to assess association of the scores with subsequent incident breast cancer (950 pairs) and colorectal cancer (831 pairs).
Compared to the VAT prediction by the concurrent VAT score (R2 = 0.70 in men, 0.68 in women), the forecasted original VAT score (R2 = 0.54, 0.48) performed better than past anthropometry alone (R2 = 0.47, 0.40) or two published scores (VAI, METS-VF). The forecasted refit (R2 = 0.61, 0.51) and enhanced (R2 = 0.62, 0.55) VAT scores each showed slight improvements. Similar to the concurrent VAT score, the forecasted VAT scores were associated with breast cancer, but not colorectal cancer. Both the refit score (adjusted OR for tertile 3 vs. 1 = 1.27; 95% CI: 1.00-1.62) and enhanced score (1.27; 0.99-1.62) were associated with breast cancer independently of BMI.
Predicted VAT from midlife data can be used as a surrogate to assess the effect of VAT on incident diseases associated with obesity, as illustrated for postmenopausal breast cancer. |
doi_str_mv | 10.1371/journal.pone.0306606 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3082558068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A801798217</galeid><doaj_id>oai_doaj_org_article_2f64863f4cf04386b5087a274def7800</doaj_id><sourcerecordid>A801798217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c572t-ffa6a39f1b24deb0ef552cd1a8997e45b3a25a9c4af7a090146486f9be8ed5433</originalsourceid><addsrcrecordid>eNqNk11rFDEUhgdRbK3-A9GAIHqxaz7m0xspix8LlYqt3oYzmWQnJTuZJpni_nsz3WnZkV5ILhKS57zn5E1OkrwkeElYQT5c2cF1YJa97eQSM5znOH-UHJOK0UVOMXt8sD5Knnl_hXHGyjx_mhyxCtOU0vQ4aX842WgRtO2QVUgNYXAS3WgvpAODoNG99TrsEHQNgr43WsAtHCwS0EUKOeklONF-RJetRN8HE7QMbacFWtnWuoAuwtDsnidPFBgvX0zzSfLry-fL1bfF2fnX9er0bCGygoaFUpADqxSpadrIGkuVZVQ0BMqqKmSa1QxoBpVIQRWAK0zSPC1zVdWylE2WMnaSvN7r9sZ6PpnkOcMlzbIS52Uk1nuisXDFe6e34Hbcgua3G9ZtOLighZGcqlGdqVQonEbv6gyXBdAilqaKEuOo9WnKNtRb2QjZhWjbTHR-0umWb-wNJ4RmBWOjwrtJwdnrQfrAt6P5xkAn7bAvPI-l07HwN_-gD19vojYQb6A7ZWNiMYry0xKToiopKSK1fICKo5FbLeKXUjruzwLezwIiE-SfsIHBe76--Pn_7PnvOfv2gG0lmNB6a4bxk_k5mO5B4az3Tqp7lwnmY0fcucHHjuBTR8SwV4cvdB901wLsL3D7Bm8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082558068</pqid></control><display><type>article</type><title>Prediction of future visceral adiposity and application to cancer research: The Multiethnic Cohort Study</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Wilkens, Lynne R ; Castelfranco, Ann M ; Monroe, Kristine R ; Kristal, Bruce S ; Cheng, Iona ; Maskarinec, Gertraud ; Hullar, Meredith A ; Lampe, Johanna W ; Shepherd, John A ; Franke, Adrian A ; Ernst, Thomas ; Le Marchand, Loïc ; Lim, Unhee</creator><creatorcontrib>Wilkens, Lynne R ; Castelfranco, Ann M ; Monroe, Kristine R ; Kristal, Bruce S ; Cheng, Iona ; Maskarinec, Gertraud ; Hullar, Meredith A ; Lampe, Johanna W ; Shepherd, John A ; Franke, Adrian A ; Ernst, Thomas ; Le Marchand, Loïc ; Lim, Unhee</creatorcontrib><description>We previously developed a prediction score for MRI-quantified abdominal visceral adipose tissue (VAT) based on concurrent measurements of height, body mass index (BMI), and nine blood biomarkers, for optimal performance in five racial/ethnic groups. Here we evaluated the VAT score for prediction of future VAT and examined if enhancement with additional biomarkers, lifestyle behavior information, and medical history improves the prediction.
We examined 500 participants from the Multiethnic Cohort (MEC) with detailed data (age 50-66) collected 10 years prior to their MRI assessment of VAT. We generated three forecasted VAT prediction models: first by applying the original VAT equation to the past data on the predictors ("original"), second by refitting the past data on anthropometry and biomarkers ("refit"), and third by building a new prediction model based on the past data enhanced with lifestyle and medical history ("enhanced"). We compared the forecasted prediction scores to future VAT using the coefficient of determination (R2). In independent nested case-control data in MEC, we applied the concurrent and forecasted VAT models to assess association of the scores with subsequent incident breast cancer (950 pairs) and colorectal cancer (831 pairs).
Compared to the VAT prediction by the concurrent VAT score (R2 = 0.70 in men, 0.68 in women), the forecasted original VAT score (R2 = 0.54, 0.48) performed better than past anthropometry alone (R2 = 0.47, 0.40) or two published scores (VAI, METS-VF). The forecasted refit (R2 = 0.61, 0.51) and enhanced (R2 = 0.62, 0.55) VAT scores each showed slight improvements. Similar to the concurrent VAT score, the forecasted VAT scores were associated with breast cancer, but not colorectal cancer. Both the refit score (adjusted OR for tertile 3 vs. 1 = 1.27; 95% CI: 1.00-1.62) and enhanced score (1.27; 0.99-1.62) were associated with breast cancer independently of BMI.
Predicted VAT from midlife data can be used as a surrogate to assess the effect of VAT on incident diseases associated with obesity, as illustrated for postmenopausal breast cancer.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0306606</identifier><identifier>PMID: 39024224</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Abdomen ; Adipose tissue ; Adipose tissues ; Adiposity ; Aged ; Anthropometry ; Biology and Life Sciences ; Biomarkers ; Body fat ; Body Mass Index ; Body size ; Breast cancer ; Cancer ; Cardiovascular disease ; Case-Control Studies ; Cohort Studies ; Colorectal cancer ; Colorectal carcinoma ; Control data (computers) ; Diet ; Ethnicity ; Female ; Forecasts and trends ; Humans ; Intra-Abdominal Fat - diagnostic imaging ; Magnetic Resonance Imaging ; Male ; Medical prognosis ; Medical research ; Medicine and Health Sciences ; Metabolism ; Middle Aged ; Minority & ethnic groups ; Neoplasms - diagnostic imaging ; Nutrition research ; Obesity ; Oncology, Experimental ; Physical Sciences ; Post-menopause ; Postmenopausal women ; Prediction models ; Questionnaires ; Race ; Research and Analysis Methods ; Womens health</subject><ispartof>PloS one, 2024-07, Vol.19 (7), p.e0306606</ispartof><rights>Copyright: © 2024 Wilkens et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Wilkens et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Wilkens et al 2024 Wilkens et al</rights><rights>2024 Wilkens et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c572t-ffa6a39f1b24deb0ef552cd1a8997e45b3a25a9c4af7a090146486f9be8ed5433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11257330/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11257330/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39024224$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilkens, Lynne R</creatorcontrib><creatorcontrib>Castelfranco, Ann M</creatorcontrib><creatorcontrib>Monroe, Kristine R</creatorcontrib><creatorcontrib>Kristal, Bruce S</creatorcontrib><creatorcontrib>Cheng, Iona</creatorcontrib><creatorcontrib>Maskarinec, Gertraud</creatorcontrib><creatorcontrib>Hullar, Meredith A</creatorcontrib><creatorcontrib>Lampe, Johanna W</creatorcontrib><creatorcontrib>Shepherd, John A</creatorcontrib><creatorcontrib>Franke, Adrian A</creatorcontrib><creatorcontrib>Ernst, Thomas</creatorcontrib><creatorcontrib>Le Marchand, Loïc</creatorcontrib><creatorcontrib>Lim, Unhee</creatorcontrib><title>Prediction of future visceral adiposity and application to cancer research: The Multiethnic Cohort Study</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>We previously developed a prediction score for MRI-quantified abdominal visceral adipose tissue (VAT) based on concurrent measurements of height, body mass index (BMI), and nine blood biomarkers, for optimal performance in five racial/ethnic groups. Here we evaluated the VAT score for prediction of future VAT and examined if enhancement with additional biomarkers, lifestyle behavior information, and medical history improves the prediction.
We examined 500 participants from the Multiethnic Cohort (MEC) with detailed data (age 50-66) collected 10 years prior to their MRI assessment of VAT. We generated three forecasted VAT prediction models: first by applying the original VAT equation to the past data on the predictors ("original"), second by refitting the past data on anthropometry and biomarkers ("refit"), and third by building a new prediction model based on the past data enhanced with lifestyle and medical history ("enhanced"). We compared the forecasted prediction scores to future VAT using the coefficient of determination (R2). In independent nested case-control data in MEC, we applied the concurrent and forecasted VAT models to assess association of the scores with subsequent incident breast cancer (950 pairs) and colorectal cancer (831 pairs).
Compared to the VAT prediction by the concurrent VAT score (R2 = 0.70 in men, 0.68 in women), the forecasted original VAT score (R2 = 0.54, 0.48) performed better than past anthropometry alone (R2 = 0.47, 0.40) or two published scores (VAI, METS-VF). The forecasted refit (R2 = 0.61, 0.51) and enhanced (R2 = 0.62, 0.55) VAT scores each showed slight improvements. Similar to the concurrent VAT score, the forecasted VAT scores were associated with breast cancer, but not colorectal cancer. Both the refit score (adjusted OR for tertile 3 vs. 1 = 1.27; 95% CI: 1.00-1.62) and enhanced score (1.27; 0.99-1.62) were associated with breast cancer independently of BMI.
Predicted VAT from midlife data can be used as a surrogate to assess the effect of VAT on incident diseases associated with obesity, as illustrated for postmenopausal breast cancer.</description><subject>Abdomen</subject><subject>Adipose tissue</subject><subject>Adipose tissues</subject><subject>Adiposity</subject><subject>Aged</subject><subject>Anthropometry</subject><subject>Biology and Life Sciences</subject><subject>Biomarkers</subject><subject>Body fat</subject><subject>Body Mass Index</subject><subject>Body size</subject><subject>Breast cancer</subject><subject>Cancer</subject><subject>Cardiovascular disease</subject><subject>Case-Control Studies</subject><subject>Cohort Studies</subject><subject>Colorectal cancer</subject><subject>Colorectal carcinoma</subject><subject>Control data (computers)</subject><subject>Diet</subject><subject>Ethnicity</subject><subject>Female</subject><subject>Forecasts and trends</subject><subject>Humans</subject><subject>Intra-Abdominal Fat - diagnostic imaging</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Medical prognosis</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Metabolism</subject><subject>Middle Aged</subject><subject>Minority & ethnic groups</subject><subject>Neoplasms - diagnostic imaging</subject><subject>Nutrition research</subject><subject>Obesity</subject><subject>Oncology, Experimental</subject><subject>Physical Sciences</subject><subject>Post-menopause</subject><subject>Postmenopausal women</subject><subject>Prediction models</subject><subject>Questionnaires</subject><subject>Race</subject><subject>Research and Analysis Methods</subject><subject>Womens health</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11rFDEUhgdRbK3-A9GAIHqxaz7m0xspix8LlYqt3oYzmWQnJTuZJpni_nsz3WnZkV5ILhKS57zn5E1OkrwkeElYQT5c2cF1YJa97eQSM5znOH-UHJOK0UVOMXt8sD5Knnl_hXHGyjx_mhyxCtOU0vQ4aX842WgRtO2QVUgNYXAS3WgvpAODoNG99TrsEHQNgr43WsAtHCwS0EUKOeklONF-RJetRN8HE7QMbacFWtnWuoAuwtDsnidPFBgvX0zzSfLry-fL1bfF2fnX9er0bCGygoaFUpADqxSpadrIGkuVZVQ0BMqqKmSa1QxoBpVIQRWAK0zSPC1zVdWylE2WMnaSvN7r9sZ6PpnkOcMlzbIS52Uk1nuisXDFe6e34Hbcgua3G9ZtOLighZGcqlGdqVQonEbv6gyXBdAilqaKEuOo9WnKNtRb2QjZhWjbTHR-0umWb-wNJ4RmBWOjwrtJwdnrQfrAt6P5xkAn7bAvPI-l07HwN_-gD19vojYQb6A7ZWNiMYry0xKToiopKSK1fICKo5FbLeKXUjruzwLezwIiE-SfsIHBe76--Pn_7PnvOfv2gG0lmNB6a4bxk_k5mO5B4az3Tqp7lwnmY0fcucHHjuBTR8SwV4cvdB901wLsL3D7Bm8</recordid><startdate>20240718</startdate><enddate>20240718</enddate><creator>Wilkens, Lynne R</creator><creator>Castelfranco, Ann M</creator><creator>Monroe, Kristine R</creator><creator>Kristal, Bruce S</creator><creator>Cheng, Iona</creator><creator>Maskarinec, Gertraud</creator><creator>Hullar, Meredith A</creator><creator>Lampe, Johanna W</creator><creator>Shepherd, John A</creator><creator>Franke, Adrian A</creator><creator>Ernst, Thomas</creator><creator>Le Marchand, Loïc</creator><creator>Lim, Unhee</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20240718</creationdate><title>Prediction of future visceral adiposity and application to cancer research: The Multiethnic Cohort Study</title><author>Wilkens, Lynne R ; Castelfranco, Ann M ; Monroe, Kristine R ; Kristal, Bruce S ; Cheng, Iona ; Maskarinec, Gertraud ; Hullar, Meredith A ; Lampe, Johanna W ; Shepherd, John A ; Franke, Adrian A ; Ernst, Thomas ; Le Marchand, Loïc ; Lim, Unhee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c572t-ffa6a39f1b24deb0ef552cd1a8997e45b3a25a9c4af7a090146486f9be8ed5433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abdomen</topic><topic>Adipose tissue</topic><topic>Adipose tissues</topic><topic>Adiposity</topic><topic>Aged</topic><topic>Anthropometry</topic><topic>Biology and Life Sciences</topic><topic>Biomarkers</topic><topic>Body fat</topic><topic>Body Mass Index</topic><topic>Body size</topic><topic>Breast cancer</topic><topic>Cancer</topic><topic>Cardiovascular disease</topic><topic>Case-Control Studies</topic><topic>Cohort Studies</topic><topic>Colorectal cancer</topic><topic>Colorectal carcinoma</topic><topic>Control data (computers)</topic><topic>Diet</topic><topic>Ethnicity</topic><topic>Female</topic><topic>Forecasts and trends</topic><topic>Humans</topic><topic>Intra-Abdominal Fat - diagnostic imaging</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Medical prognosis</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Metabolism</topic><topic>Middle Aged</topic><topic>Minority & ethnic groups</topic><topic>Neoplasms - diagnostic imaging</topic><topic>Nutrition research</topic><topic>Obesity</topic><topic>Oncology, Experimental</topic><topic>Physical Sciences</topic><topic>Post-menopause</topic><topic>Postmenopausal women</topic><topic>Prediction models</topic><topic>Questionnaires</topic><topic>Race</topic><topic>Research and Analysis Methods</topic><topic>Womens health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilkens, Lynne R</creatorcontrib><creatorcontrib>Castelfranco, Ann M</creatorcontrib><creatorcontrib>Monroe, Kristine R</creatorcontrib><creatorcontrib>Kristal, Bruce S</creatorcontrib><creatorcontrib>Cheng, Iona</creatorcontrib><creatorcontrib>Maskarinec, Gertraud</creatorcontrib><creatorcontrib>Hullar, Meredith A</creatorcontrib><creatorcontrib>Lampe, Johanna W</creatorcontrib><creatorcontrib>Shepherd, John A</creatorcontrib><creatorcontrib>Franke, Adrian A</creatorcontrib><creatorcontrib>Ernst, Thomas</creatorcontrib><creatorcontrib>Le Marchand, Loïc</creatorcontrib><creatorcontrib>Lim, Unhee</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilkens, Lynne R</au><au>Castelfranco, Ann M</au><au>Monroe, Kristine R</au><au>Kristal, Bruce S</au><au>Cheng, Iona</au><au>Maskarinec, Gertraud</au><au>Hullar, Meredith A</au><au>Lampe, Johanna W</au><au>Shepherd, John A</au><au>Franke, Adrian A</au><au>Ernst, Thomas</au><au>Le Marchand, Loïc</au><au>Lim, Unhee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of future visceral adiposity and application to cancer research: The Multiethnic Cohort Study</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-07-18</date><risdate>2024</risdate><volume>19</volume><issue>7</issue><spage>e0306606</spage><pages>e0306606-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>We previously developed a prediction score for MRI-quantified abdominal visceral adipose tissue (VAT) based on concurrent measurements of height, body mass index (BMI), and nine blood biomarkers, for optimal performance in five racial/ethnic groups. Here we evaluated the VAT score for prediction of future VAT and examined if enhancement with additional biomarkers, lifestyle behavior information, and medical history improves the prediction.
We examined 500 participants from the Multiethnic Cohort (MEC) with detailed data (age 50-66) collected 10 years prior to their MRI assessment of VAT. We generated three forecasted VAT prediction models: first by applying the original VAT equation to the past data on the predictors ("original"), second by refitting the past data on anthropometry and biomarkers ("refit"), and third by building a new prediction model based on the past data enhanced with lifestyle and medical history ("enhanced"). We compared the forecasted prediction scores to future VAT using the coefficient of determination (R2). In independent nested case-control data in MEC, we applied the concurrent and forecasted VAT models to assess association of the scores with subsequent incident breast cancer (950 pairs) and colorectal cancer (831 pairs).
Compared to the VAT prediction by the concurrent VAT score (R2 = 0.70 in men, 0.68 in women), the forecasted original VAT score (R2 = 0.54, 0.48) performed better than past anthropometry alone (R2 = 0.47, 0.40) or two published scores (VAI, METS-VF). The forecasted refit (R2 = 0.61, 0.51) and enhanced (R2 = 0.62, 0.55) VAT scores each showed slight improvements. Similar to the concurrent VAT score, the forecasted VAT scores were associated with breast cancer, but not colorectal cancer. Both the refit score (adjusted OR for tertile 3 vs. 1 = 1.27; 95% CI: 1.00-1.62) and enhanced score (1.27; 0.99-1.62) were associated with breast cancer independently of BMI.
Predicted VAT from midlife data can be used as a surrogate to assess the effect of VAT on incident diseases associated with obesity, as illustrated for postmenopausal breast cancer.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>39024224</pmid><doi>10.1371/journal.pone.0306606</doi><tpages>e0306606</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2024-07, Vol.19 (7), p.e0306606 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_3082558068 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Abdomen Adipose tissue Adipose tissues Adiposity Aged Anthropometry Biology and Life Sciences Biomarkers Body fat Body Mass Index Body size Breast cancer Cancer Cardiovascular disease Case-Control Studies Cohort Studies Colorectal cancer Colorectal carcinoma Control data (computers) Diet Ethnicity Female Forecasts and trends Humans Intra-Abdominal Fat - diagnostic imaging Magnetic Resonance Imaging Male Medical prognosis Medical research Medicine and Health Sciences Metabolism Middle Aged Minority & ethnic groups Neoplasms - diagnostic imaging Nutrition research Obesity Oncology, Experimental Physical Sciences Post-menopause Postmenopausal women Prediction models Questionnaires Race Research and Analysis Methods Womens health |
title | Prediction of future visceral adiposity and application to cancer research: The Multiethnic Cohort Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A16%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20future%20visceral%20adiposity%20and%20application%20to%20cancer%20research:%20The%20Multiethnic%20Cohort%20Study&rft.jtitle=PloS%20one&rft.au=Wilkens,%20Lynne%20R&rft.date=2024-07-18&rft.volume=19&rft.issue=7&rft.spage=e0306606&rft.pages=e0306606-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0306606&rft_dat=%3Cgale_plos_%3EA801798217%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3082558068&rft_id=info:pmid/39024224&rft_galeid=A801798217&rft_doaj_id=oai_doaj_org_article_2f64863f4cf04386b5087a274def7800&rfr_iscdi=true |