A supervised multiclass framework for mineral classification of Iberian beads
Research on personal adornments depends on the reliable characterisation of materials to trace provenance and model complex social networks. However, many analytical techniques require the transfer of materials from the museum to the laboratory, involving high insurance costs and limiting the number...
Gespeichert in:
Veröffentlicht in: | PloS one 2024-07, Vol.19 (7), p.e0302563 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | e0302563 |
container_title | PloS one |
container_volume | 19 |
creator | Sanchez-Gomez, Daniel Odriozola Lloret, Carlos P Sousa, Ana Catarina Garrido-Cordero, José Ángel Romero-García, Galo Martínez-Blanes, José María Edo I Benaiges, Manel Villalobos-García, Rodrigo Gonçalves, Victor S |
description | Research on personal adornments depends on the reliable characterisation of materials to trace provenance and model complex social networks. However, many analytical techniques require the transfer of materials from the museum to the laboratory, involving high insurance costs and limiting the number of items that can be analysed, making the process of empirical data collection a complicated, expensive and time-consuming routine. In this study, we compiled the largest geochemical dataset of Iberian personal adornments (n = 1243 samples) by coupling X-ray fluorescence compositional data with their respective X-ray diffraction mineral labels. This allowed us to develop a machine learning-based framework for the prediction of bead-forming minerals by training and benchmarking 13 of the most widely used supervised algorithms. As a proof of concept, we developed a multiclass model and evaluated its performance on two assemblages from different Portuguese sites with current mineralogical characterisation: Cova das Lapas (n = 15 samples) and Gruta da Marmota (n = 10 samples). Our results showed that decisión-tres based classifiers outperformed other classification logics given the discriminative importance of some chemical elements in determining the mineral phase, which fits particularly well with the decision-making process of this type of model. The comparison of results between the different validation sets and the proof-of-concept has highlighted the risk of using synthetic data to handle imbalance and the main limitation of the framework: its restrictive class system. We conclude that the presented approach can successfully assist in the mineral classification workflow when specific analyses are not available, saving time and allowing a transparent and straightforward assessment of model predictions. Furthermore, we propose a workflow for the interpretation of predictions using the model outputs as compound responses enabling an uncertainty reduction approach currently used by our team. The Python-based framework is packaged in a public repository and includes all the necessary resources for its reusability without the need for any installation. |
doi_str_mv | 10.1371/journal.pone.0302563 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3078421346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A800837540</galeid><doaj_id>oai_doaj_org_article_5ddbe9d845f7433588bfb5bf16492c65</doaj_id><sourcerecordid>A800837540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c642t-fba4d2d06db93608feb206747f67d0b4e372a43929fec42dbbfea309b3e6b64c3</originalsourceid><addsrcrecordid>eNqNkttu1DAQhiMEoqXwBggiISG42MWn2MkVWlUcViqqxOnWsuPxrpckXuykwNvjdNNqg3qBfGFr_M0_nvGfZU8xWmIq8JudH0KnmuXed7BEFJGC03vZKa4oWXCC6P2j80n2KMYdQgUtOX-YndCyKgsh2Gn2aZXHYQ_hykUweTs0vasbFWNug2rhlw8_cutD3roOgmry6ztnXa1657vc23ytITjV5RqUiY-zB1Y1EZ5M-1n27f27r-cfFxeXH9bnq4tFzRnpF1YrZohB3OiKclRa0ARxwYTlwiDNgAqiGK1IZaFmxGhtQVFUaQpcc1bTs-z5QXff-CinSURJkSgZwZTxRKwPhPFqJ_fBtSr8kV45eR3wYSNVGHsFWRijoTIlK6xglBZlqa0utMWcVaTmRdJ6O1UbdAumhq5Ps5iJzm86t5UbfyUxJpRjVCaFV5NC8D8HiL1sXayhaVQHfjg8XOBCYJzQF_-gd7c3URuVOnCd9alwPYrKVYlSRVEwlKjlHVRaBlpXJ99Yl-KzhNezhMT08LvfqCFGuf7y-f_Zy-9z9uURuwXV9Nvom2E0UZyD7ADWwccYwN5OGSM52v5mGnK0vZxsn9KeHf_QbdKNz-lfn179Hw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3078421346</pqid></control><display><type>article</type><title>A supervised multiclass framework for mineral classification of Iberian beads</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Sanchez-Gomez, Daniel ; Odriozola Lloret, Carlos P ; Sousa, Ana Catarina ; Garrido-Cordero, José Ángel ; Romero-García, Galo ; Martínez-Blanes, José María ; Edo I Benaiges, Manel ; Villalobos-García, Rodrigo ; Gonçalves, Victor S</creator><creatorcontrib>Sanchez-Gomez, Daniel ; Odriozola Lloret, Carlos P ; Sousa, Ana Catarina ; Garrido-Cordero, José Ángel ; Romero-García, Galo ; Martínez-Blanes, José María ; Edo I Benaiges, Manel ; Villalobos-García, Rodrigo ; Gonçalves, Victor S</creatorcontrib><description>Research on personal adornments depends on the reliable characterisation of materials to trace provenance and model complex social networks. However, many analytical techniques require the transfer of materials from the museum to the laboratory, involving high insurance costs and limiting the number of items that can be analysed, making the process of empirical data collection a complicated, expensive and time-consuming routine. In this study, we compiled the largest geochemical dataset of Iberian personal adornments (n = 1243 samples) by coupling X-ray fluorescence compositional data with their respective X-ray diffraction mineral labels. This allowed us to develop a machine learning-based framework for the prediction of bead-forming minerals by training and benchmarking 13 of the most widely used supervised algorithms. As a proof of concept, we developed a multiclass model and evaluated its performance on two assemblages from different Portuguese sites with current mineralogical characterisation: Cova das Lapas (n = 15 samples) and Gruta da Marmota (n = 10 samples). Our results showed that decisión-tres based classifiers outperformed other classification logics given the discriminative importance of some chemical elements in determining the mineral phase, which fits particularly well with the decision-making process of this type of model. The comparison of results between the different validation sets and the proof-of-concept has highlighted the risk of using synthetic data to handle imbalance and the main limitation of the framework: its restrictive class system. We conclude that the presented approach can successfully assist in the mineral classification workflow when specific analyses are not available, saving time and allowing a transparent and straightforward assessment of model predictions. Furthermore, we propose a workflow for the interpretation of predictions using the model outputs as compound responses enabling an uncertainty reduction approach currently used by our team. The Python-based framework is packaged in a public repository and includes all the necessary resources for its reusability without the need for any installation.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0302563</identifier><identifier>PMID: 38985774</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Archaeology ; Beads ; Chemical elements ; Classification ; Cost analysis ; Data analysis ; Data collection ; Datasets ; Decision making ; Diffraction ; Earth Sciences ; Humans ; Identification and classification ; Laboratories ; Machine Learning ; Methods ; Mineralogy ; Minerals ; Minerals - analysis ; Minerals - chemistry ; Museums ; NMR ; Nuclear magnetic resonance ; Physical Sciences ; Portugal ; Predictions ; Raw materials ; Reference materials ; Research and Analysis Methods ; Risk analysis ; Sensors ; Social networks ; Social organization ; Social Sciences ; Software ; Spectrometry, X-Ray Emission - methods ; Supervised Machine Learning ; Synthetic data ; Workflow ; X-Ray Diffraction ; X-ray fluorescence ; X-ray spectroscopy ; X-rays</subject><ispartof>PloS one, 2024-07, Vol.19 (7), p.e0302563</ispartof><rights>Copyright: © 2024 Sanchez-Gomez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Sanchez-Gomez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Sanchez-Gomez et al 2024 Sanchez-Gomez et al</rights><rights>2024 Sanchez-Gomez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c642t-fba4d2d06db93608feb206747f67d0b4e372a43929fec42dbbfea309b3e6b64c3</cites><orcidid>0000-0002-9585-7917 ; 0000-0002-1533-5781 ; 0000-0003-3179-3288</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11236108/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11236108/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38985774$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sanchez-Gomez, Daniel</creatorcontrib><creatorcontrib>Odriozola Lloret, Carlos P</creatorcontrib><creatorcontrib>Sousa, Ana Catarina</creatorcontrib><creatorcontrib>Garrido-Cordero, José Ángel</creatorcontrib><creatorcontrib>Romero-García, Galo</creatorcontrib><creatorcontrib>Martínez-Blanes, José María</creatorcontrib><creatorcontrib>Edo I Benaiges, Manel</creatorcontrib><creatorcontrib>Villalobos-García, Rodrigo</creatorcontrib><creatorcontrib>Gonçalves, Victor S</creatorcontrib><title>A supervised multiclass framework for mineral classification of Iberian beads</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Research on personal adornments depends on the reliable characterisation of materials to trace provenance and model complex social networks. However, many analytical techniques require the transfer of materials from the museum to the laboratory, involving high insurance costs and limiting the number of items that can be analysed, making the process of empirical data collection a complicated, expensive and time-consuming routine. In this study, we compiled the largest geochemical dataset of Iberian personal adornments (n = 1243 samples) by coupling X-ray fluorescence compositional data with their respective X-ray diffraction mineral labels. This allowed us to develop a machine learning-based framework for the prediction of bead-forming minerals by training and benchmarking 13 of the most widely used supervised algorithms. As a proof of concept, we developed a multiclass model and evaluated its performance on two assemblages from different Portuguese sites with current mineralogical characterisation: Cova das Lapas (n = 15 samples) and Gruta da Marmota (n = 10 samples). Our results showed that decisión-tres based classifiers outperformed other classification logics given the discriminative importance of some chemical elements in determining the mineral phase, which fits particularly well with the decision-making process of this type of model. The comparison of results between the different validation sets and the proof-of-concept has highlighted the risk of using synthetic data to handle imbalance and the main limitation of the framework: its restrictive class system. We conclude that the presented approach can successfully assist in the mineral classification workflow when specific analyses are not available, saving time and allowing a transparent and straightforward assessment of model predictions. Furthermore, we propose a workflow for the interpretation of predictions using the model outputs as compound responses enabling an uncertainty reduction approach currently used by our team. The Python-based framework is packaged in a public repository and includes all the necessary resources for its reusability without the need for any installation.</description><subject>Algorithms</subject><subject>Archaeology</subject><subject>Beads</subject><subject>Chemical elements</subject><subject>Classification</subject><subject>Cost analysis</subject><subject>Data analysis</subject><subject>Data collection</subject><subject>Datasets</subject><subject>Decision making</subject><subject>Diffraction</subject><subject>Earth Sciences</subject><subject>Humans</subject><subject>Identification and classification</subject><subject>Laboratories</subject><subject>Machine Learning</subject><subject>Methods</subject><subject>Mineralogy</subject><subject>Minerals</subject><subject>Minerals - analysis</subject><subject>Minerals - chemistry</subject><subject>Museums</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Physical Sciences</subject><subject>Portugal</subject><subject>Predictions</subject><subject>Raw materials</subject><subject>Reference materials</subject><subject>Research and Analysis Methods</subject><subject>Risk analysis</subject><subject>Sensors</subject><subject>Social networks</subject><subject>Social organization</subject><subject>Social Sciences</subject><subject>Software</subject><subject>Spectrometry, X-Ray Emission - methods</subject><subject>Supervised Machine Learning</subject><subject>Synthetic data</subject><subject>Workflow</subject><subject>X-Ray Diffraction</subject><subject>X-ray fluorescence</subject><subject>X-ray spectroscopy</subject><subject>X-rays</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkttu1DAQhiMEoqXwBggiISG42MWn2MkVWlUcViqqxOnWsuPxrpckXuykwNvjdNNqg3qBfGFr_M0_nvGfZU8xWmIq8JudH0KnmuXed7BEFJGC03vZKa4oWXCC6P2j80n2KMYdQgUtOX-YndCyKgsh2Gn2aZXHYQ_hykUweTs0vasbFWNug2rhlw8_cutD3roOgmry6ztnXa1657vc23ytITjV5RqUiY-zB1Y1EZ5M-1n27f27r-cfFxeXH9bnq4tFzRnpF1YrZohB3OiKclRa0ARxwYTlwiDNgAqiGK1IZaFmxGhtQVFUaQpcc1bTs-z5QXff-CinSURJkSgZwZTxRKwPhPFqJ_fBtSr8kV45eR3wYSNVGHsFWRijoTIlK6xglBZlqa0utMWcVaTmRdJ6O1UbdAumhq5Ps5iJzm86t5UbfyUxJpRjVCaFV5NC8D8HiL1sXayhaVQHfjg8XOBCYJzQF_-gd7c3URuVOnCd9alwPYrKVYlSRVEwlKjlHVRaBlpXJ99Yl-KzhNezhMT08LvfqCFGuf7y-f_Zy-9z9uURuwXV9Nvom2E0UZyD7ADWwccYwN5OGSM52v5mGnK0vZxsn9KeHf_QbdKNz-lfn179Hw</recordid><startdate>20240710</startdate><enddate>20240710</enddate><creator>Sanchez-Gomez, Daniel</creator><creator>Odriozola Lloret, Carlos P</creator><creator>Sousa, Ana Catarina</creator><creator>Garrido-Cordero, José Ángel</creator><creator>Romero-García, Galo</creator><creator>Martínez-Blanes, José María</creator><creator>Edo I Benaiges, Manel</creator><creator>Villalobos-García, Rodrigo</creator><creator>Gonçalves, Victor S</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9585-7917</orcidid><orcidid>https://orcid.org/0000-0002-1533-5781</orcidid><orcidid>https://orcid.org/0000-0003-3179-3288</orcidid></search><sort><creationdate>20240710</creationdate><title>A supervised multiclass framework for mineral classification of Iberian beads</title><author>Sanchez-Gomez, Daniel ; Odriozola Lloret, Carlos P ; Sousa, Ana Catarina ; Garrido-Cordero, José Ángel ; Romero-García, Galo ; Martínez-Blanes, José María ; Edo I Benaiges, Manel ; Villalobos-García, Rodrigo ; Gonçalves, Victor S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c642t-fba4d2d06db93608feb206747f67d0b4e372a43929fec42dbbfea309b3e6b64c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Archaeology</topic><topic>Beads</topic><topic>Chemical elements</topic><topic>Classification</topic><topic>Cost analysis</topic><topic>Data analysis</topic><topic>Data collection</topic><topic>Datasets</topic><topic>Decision making</topic><topic>Diffraction</topic><topic>Earth Sciences</topic><topic>Humans</topic><topic>Identification and classification</topic><topic>Laboratories</topic><topic>Machine Learning</topic><topic>Methods</topic><topic>Mineralogy</topic><topic>Minerals</topic><topic>Minerals - analysis</topic><topic>Minerals - chemistry</topic><topic>Museums</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Physical Sciences</topic><topic>Portugal</topic><topic>Predictions</topic><topic>Raw materials</topic><topic>Reference materials</topic><topic>Research and Analysis Methods</topic><topic>Risk analysis</topic><topic>Sensors</topic><topic>Social networks</topic><topic>Social organization</topic><topic>Social Sciences</topic><topic>Software</topic><topic>Spectrometry, X-Ray Emission - methods</topic><topic>Supervised Machine Learning</topic><topic>Synthetic data</topic><topic>Workflow</topic><topic>X-Ray Diffraction</topic><topic>X-ray fluorescence</topic><topic>X-ray spectroscopy</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanchez-Gomez, Daniel</creatorcontrib><creatorcontrib>Odriozola Lloret, Carlos P</creatorcontrib><creatorcontrib>Sousa, Ana Catarina</creatorcontrib><creatorcontrib>Garrido-Cordero, José Ángel</creatorcontrib><creatorcontrib>Romero-García, Galo</creatorcontrib><creatorcontrib>Martínez-Blanes, José María</creatorcontrib><creatorcontrib>Edo I Benaiges, Manel</creatorcontrib><creatorcontrib>Villalobos-García, Rodrigo</creatorcontrib><creatorcontrib>Gonçalves, Victor S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanchez-Gomez, Daniel</au><au>Odriozola Lloret, Carlos P</au><au>Sousa, Ana Catarina</au><au>Garrido-Cordero, José Ángel</au><au>Romero-García, Galo</au><au>Martínez-Blanes, José María</au><au>Edo I Benaiges, Manel</au><au>Villalobos-García, Rodrigo</au><au>Gonçalves, Victor S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A supervised multiclass framework for mineral classification of Iberian beads</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-07-10</date><risdate>2024</risdate><volume>19</volume><issue>7</issue><spage>e0302563</spage><pages>e0302563-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Research on personal adornments depends on the reliable characterisation of materials to trace provenance and model complex social networks. However, many analytical techniques require the transfer of materials from the museum to the laboratory, involving high insurance costs and limiting the number of items that can be analysed, making the process of empirical data collection a complicated, expensive and time-consuming routine. In this study, we compiled the largest geochemical dataset of Iberian personal adornments (n = 1243 samples) by coupling X-ray fluorescence compositional data with their respective X-ray diffraction mineral labels. This allowed us to develop a machine learning-based framework for the prediction of bead-forming minerals by training and benchmarking 13 of the most widely used supervised algorithms. As a proof of concept, we developed a multiclass model and evaluated its performance on two assemblages from different Portuguese sites with current mineralogical characterisation: Cova das Lapas (n = 15 samples) and Gruta da Marmota (n = 10 samples). Our results showed that decisión-tres based classifiers outperformed other classification logics given the discriminative importance of some chemical elements in determining the mineral phase, which fits particularly well with the decision-making process of this type of model. The comparison of results between the different validation sets and the proof-of-concept has highlighted the risk of using synthetic data to handle imbalance and the main limitation of the framework: its restrictive class system. We conclude that the presented approach can successfully assist in the mineral classification workflow when specific analyses are not available, saving time and allowing a transparent and straightforward assessment of model predictions. Furthermore, we propose a workflow for the interpretation of predictions using the model outputs as compound responses enabling an uncertainty reduction approach currently used by our team. The Python-based framework is packaged in a public repository and includes all the necessary resources for its reusability without the need for any installation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>38985774</pmid><doi>10.1371/journal.pone.0302563</doi><tpages>e0302563</tpages><orcidid>https://orcid.org/0000-0002-9585-7917</orcidid><orcidid>https://orcid.org/0000-0002-1533-5781</orcidid><orcidid>https://orcid.org/0000-0003-3179-3288</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2024-07, Vol.19 (7), p.e0302563 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_3078421346 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Algorithms Archaeology Beads Chemical elements Classification Cost analysis Data analysis Data collection Datasets Decision making Diffraction Earth Sciences Humans Identification and classification Laboratories Machine Learning Methods Mineralogy Minerals Minerals - analysis Minerals - chemistry Museums NMR Nuclear magnetic resonance Physical Sciences Portugal Predictions Raw materials Reference materials Research and Analysis Methods Risk analysis Sensors Social networks Social organization Social Sciences Software Spectrometry, X-Ray Emission - methods Supervised Machine Learning Synthetic data Workflow X-Ray Diffraction X-ray fluorescence X-ray spectroscopy X-rays |
title | A supervised multiclass framework for mineral classification of Iberian beads |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T21%3A37%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20supervised%20multiclass%20framework%20for%20mineral%20classification%20of%20Iberian%20beads&rft.jtitle=PloS%20one&rft.au=Sanchez-Gomez,%20Daniel&rft.date=2024-07-10&rft.volume=19&rft.issue=7&rft.spage=e0302563&rft.pages=e0302563-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0302563&rft_dat=%3Cgale_plos_%3EA800837540%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3078421346&rft_id=info:pmid/38985774&rft_galeid=A800837540&rft_doaj_id=oai_doaj_org_article_5ddbe9d845f7433588bfb5bf16492c65&rfr_iscdi=true |