Clinical risk factors and blood protein biomarkers of 10-year pneumonia risk
Chronic inflammation may increase susceptibility to pneumonia. To explore associations between clinical comorbidities, serum protein immunoassays, and long-term pneumonia risk. Framingham Heart Study Offspring Cohort participants ≥65 years were linked to their Centers for Medicare Services claims da...
Gespeichert in:
Veröffentlicht in: | PloS one 2024-07, Vol.19 (7), p.e0296139 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | e0296139 |
container_title | PloS one |
container_volume | 19 |
creator | Lee, Ming-Ming Zuo, Yi Steiling, Katrina Mizgerd, Joseph P Kalesan, Bindu Walkey, Allan J |
description | Chronic inflammation may increase susceptibility to pneumonia.
To explore associations between clinical comorbidities, serum protein immunoassays, and long-term pneumonia risk.
Framingham Heart Study Offspring Cohort participants ≥65 years were linked to their Centers for Medicare Services claims data. Clinical data and 88 serum protein immunoassays were evaluated for associations with 10-year incident pneumonia risk using Fine-Gray models for competing risks of death and least absolute shrinkage and selection operators for covariate selection.
We identified 1,370 participants with immunoassays and linkage to Medicare data. During 10 years of follow up, 428 (31%) participants had a pneumonia diagnosis. Chronic pulmonary disease [subdistribution hazard ratio (SHR) 1.87; 95% confidence interval (CI), 1.33-2.61], current smoking (SHR 1.79, CI 1.31-2.45), heart failure (SHR 1.74, CI 1.10-2.74), atrial fibrillation/flutter (SHR 1.43, CI 1.06-1.93), diabetes (SHR 1.36, CI 1.05-1.75), hospitalization within one year (SHR 1.34, CI 1.09-1.65), and age (SHR 1.06 per year, CI 1.04-1.08) were associated with pneumonia. Three baseline serum protein measurements were associated with pneumonia risk independent of measured clinical factors: growth differentiation factor 15 (SHR 1.32; CI 1.02-1.69), C-reactive protein (SHR 1.16, CI 1.06-1.27) and matrix metallopeptidase 8 (SHR 1.14, CI 1.01-1.30). Addition of C-reactive protein to the clinical model improved prediction (Akaike information criterion 4950 from 4960; C-statistic of 0.64 from 0.62).
Clinical comorbidities and serum immunoassays were predictive of pneumonia risk. C-reactive protein, a routinely-available measure of inflammation, modestly improved pneumonia risk prediction over clinical factors. Our findings support the hypothesis that prior inflammation may increase the risk of pneumonia. |
doi_str_mv | 10.1371/journal.pone.0296139 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3076243275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A800174294</galeid><doaj_id>oai_doaj_org_article_d041425d74bb48a19c44f823cc0643ca</doaj_id><sourcerecordid>A800174294</sourcerecordid><originalsourceid>FETCH-LOGICAL-c572t-8c7531561ee0788111e311fd39c472db5c5a19440a18a6f048df433f8a37e9dd3</originalsourceid><addsrcrecordid>eNqNkkuL2zAUhUVp6Uzd_oPSGgqlXSTVy7a8KkPoIxAY6GsrZD0SZRQpI9ml8--rTDxDXGZRvJDR_c650tUB4CWCc0Qa9GEbhuiFm--D13OI2xqR9hE4Ry3BsxpD8vjk_ww8S2kLYUVYXT8FZ4S1NcvVc7BaOOutFK6MNl2VRsg-xFQKr8rOhaDKfQy9tr7sbNiJeKVzMZgSwdmNFrHcez3sgrfiVv4cPDHCJf1iXAvw8_OnH4uvs9Xll-XiYjWTVYP7GZNNRVBVI61hwxhCSBOEjCKtpA1WXSUrgVpKoUBM1AZSpgwlxDBBGt0qRQrw-ui7dyHxcRCJE9jUmBKc3QuwPBIqiC3fR5vPfsODsPx2I8Q1F7G30mmuIEUUV6qhXUdZbiwpNQwTKWFNiRTZ6-PYbeh2Wknt-yjcxHRa8XbD1-E3RwjjGuXxF-Dd6BDD9aBTz3c2Se2c8DoM48FZU-WuBXjzD_rw9UZqLfINrDchN5YHU37BIEQNxS3N1PwBKn9K76zMsTE2708E7yeCzPT6T78WQ0p8-f3b_7OXv6bs2xN2o4XrNym4obfBpylIj6CMIaWozf2UEeSH1N9Ngx9Sz8fUZ9mr0xe6F93FnPwFokr6ZA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3076243275</pqid></control><display><type>article</type><title>Clinical risk factors and blood protein biomarkers of 10-year pneumonia risk</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Lee, Ming-Ming ; Zuo, Yi ; Steiling, Katrina ; Mizgerd, Joseph P ; Kalesan, Bindu ; Walkey, Allan J</creator><contributor>Santulli, Gaetano</contributor><creatorcontrib>Lee, Ming-Ming ; Zuo, Yi ; Steiling, Katrina ; Mizgerd, Joseph P ; Kalesan, Bindu ; Walkey, Allan J ; Santulli, Gaetano</creatorcontrib><description>Chronic inflammation may increase susceptibility to pneumonia.
To explore associations between clinical comorbidities, serum protein immunoassays, and long-term pneumonia risk.
Framingham Heart Study Offspring Cohort participants ≥65 years were linked to their Centers for Medicare Services claims data. Clinical data and 88 serum protein immunoassays were evaluated for associations with 10-year incident pneumonia risk using Fine-Gray models for competing risks of death and least absolute shrinkage and selection operators for covariate selection.
We identified 1,370 participants with immunoassays and linkage to Medicare data. During 10 years of follow up, 428 (31%) participants had a pneumonia diagnosis. Chronic pulmonary disease [subdistribution hazard ratio (SHR) 1.87; 95% confidence interval (CI), 1.33-2.61], current smoking (SHR 1.79, CI 1.31-2.45), heart failure (SHR 1.74, CI 1.10-2.74), atrial fibrillation/flutter (SHR 1.43, CI 1.06-1.93), diabetes (SHR 1.36, CI 1.05-1.75), hospitalization within one year (SHR 1.34, CI 1.09-1.65), and age (SHR 1.06 per year, CI 1.04-1.08) were associated with pneumonia. Three baseline serum protein measurements were associated with pneumonia risk independent of measured clinical factors: growth differentiation factor 15 (SHR 1.32; CI 1.02-1.69), C-reactive protein (SHR 1.16, CI 1.06-1.27) and matrix metallopeptidase 8 (SHR 1.14, CI 1.01-1.30). Addition of C-reactive protein to the clinical model improved prediction (Akaike information criterion 4950 from 4960; C-statistic of 0.64 from 0.62).
Clinical comorbidities and serum immunoassays were predictive of pneumonia risk. C-reactive protein, a routinely-available measure of inflammation, modestly improved pneumonia risk prediction over clinical factors. Our findings support the hypothesis that prior inflammation may increase the risk of pneumonia.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0296139</identifier><identifier>PMID: 38968193</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aged ; Aged, 80 and over ; Biology and Life Sciences ; Biomarkers ; Biomarkers - blood ; Blood proteins ; Blood Proteins - analysis ; Body mass index ; C-reactive protein ; Cardiac arrhythmia ; Chronic illnesses ; Cohort Studies ; Comorbidity ; Congestive heart failure ; Diabetes ; Diabetes mellitus ; Exercise ; Female ; Heart failure ; Humans ; Immunoassay ; Immunoassays ; Inflammation ; Kidney diseases ; Kinases ; Lung diseases ; Male ; Matrix metalloproteinases ; Medicaid ; Medicare ; Medicine and Health Sciences ; Metalloproteinase ; Missing data ; Offspring ; Pneumonia ; Pneumonia - blood ; Pneumonia - epidemiology ; Proteins ; Research and Analysis Methods ; Risk Factors ; Serum proteins ; Statistical analysis ; United States - epidemiology ; Variables</subject><ispartof>PloS one, 2024-07, Vol.19 (7), p.e0296139</ispartof><rights>Copyright: © 2024 Lee et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Lee et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Lee et al 2024 Lee et al</rights><rights>2024 Lee et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c572t-8c7531561ee0788111e311fd39c472db5c5a19440a18a6f048df433f8a37e9dd3</cites><orcidid>0000-0003-4685-6894</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11226120/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11226120/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38968193$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Santulli, Gaetano</contributor><creatorcontrib>Lee, Ming-Ming</creatorcontrib><creatorcontrib>Zuo, Yi</creatorcontrib><creatorcontrib>Steiling, Katrina</creatorcontrib><creatorcontrib>Mizgerd, Joseph P</creatorcontrib><creatorcontrib>Kalesan, Bindu</creatorcontrib><creatorcontrib>Walkey, Allan J</creatorcontrib><title>Clinical risk factors and blood protein biomarkers of 10-year pneumonia risk</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Chronic inflammation may increase susceptibility to pneumonia.
To explore associations between clinical comorbidities, serum protein immunoassays, and long-term pneumonia risk.
Framingham Heart Study Offspring Cohort participants ≥65 years were linked to their Centers for Medicare Services claims data. Clinical data and 88 serum protein immunoassays were evaluated for associations with 10-year incident pneumonia risk using Fine-Gray models for competing risks of death and least absolute shrinkage and selection operators for covariate selection.
We identified 1,370 participants with immunoassays and linkage to Medicare data. During 10 years of follow up, 428 (31%) participants had a pneumonia diagnosis. Chronic pulmonary disease [subdistribution hazard ratio (SHR) 1.87; 95% confidence interval (CI), 1.33-2.61], current smoking (SHR 1.79, CI 1.31-2.45), heart failure (SHR 1.74, CI 1.10-2.74), atrial fibrillation/flutter (SHR 1.43, CI 1.06-1.93), diabetes (SHR 1.36, CI 1.05-1.75), hospitalization within one year (SHR 1.34, CI 1.09-1.65), and age (SHR 1.06 per year, CI 1.04-1.08) were associated with pneumonia. Three baseline serum protein measurements were associated with pneumonia risk independent of measured clinical factors: growth differentiation factor 15 (SHR 1.32; CI 1.02-1.69), C-reactive protein (SHR 1.16, CI 1.06-1.27) and matrix metallopeptidase 8 (SHR 1.14, CI 1.01-1.30). Addition of C-reactive protein to the clinical model improved prediction (Akaike information criterion 4950 from 4960; C-statistic of 0.64 from 0.62).
Clinical comorbidities and serum immunoassays were predictive of pneumonia risk. C-reactive protein, a routinely-available measure of inflammation, modestly improved pneumonia risk prediction over clinical factors. Our findings support the hypothesis that prior inflammation may increase the risk of pneumonia.</description><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Biology and Life Sciences</subject><subject>Biomarkers</subject><subject>Biomarkers - blood</subject><subject>Blood proteins</subject><subject>Blood Proteins - analysis</subject><subject>Body mass index</subject><subject>C-reactive protein</subject><subject>Cardiac arrhythmia</subject><subject>Chronic illnesses</subject><subject>Cohort Studies</subject><subject>Comorbidity</subject><subject>Congestive heart failure</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Exercise</subject><subject>Female</subject><subject>Heart failure</subject><subject>Humans</subject><subject>Immunoassay</subject><subject>Immunoassays</subject><subject>Inflammation</subject><subject>Kidney diseases</subject><subject>Kinases</subject><subject>Lung diseases</subject><subject>Male</subject><subject>Matrix metalloproteinases</subject><subject>Medicaid</subject><subject>Medicare</subject><subject>Medicine and Health Sciences</subject><subject>Metalloproteinase</subject><subject>Missing data</subject><subject>Offspring</subject><subject>Pneumonia</subject><subject>Pneumonia - blood</subject><subject>Pneumonia - epidemiology</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Risk Factors</subject><subject>Serum proteins</subject><subject>Statistical analysis</subject><subject>United States - epidemiology</subject><subject>Variables</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkkuL2zAUhUVp6Uzd_oPSGgqlXSTVy7a8KkPoIxAY6GsrZD0SZRQpI9ml8--rTDxDXGZRvJDR_c650tUB4CWCc0Qa9GEbhuiFm--D13OI2xqR9hE4Ry3BsxpD8vjk_ww8S2kLYUVYXT8FZ4S1NcvVc7BaOOutFK6MNl2VRsg-xFQKr8rOhaDKfQy9tr7sbNiJeKVzMZgSwdmNFrHcez3sgrfiVv4cPDHCJf1iXAvw8_OnH4uvs9Xll-XiYjWTVYP7GZNNRVBVI61hwxhCSBOEjCKtpA1WXSUrgVpKoUBM1AZSpgwlxDBBGt0qRQrw-ui7dyHxcRCJE9jUmBKc3QuwPBIqiC3fR5vPfsODsPx2I8Q1F7G30mmuIEUUV6qhXUdZbiwpNQwTKWFNiRTZ6-PYbeh2Wknt-yjcxHRa8XbD1-E3RwjjGuXxF-Dd6BDD9aBTz3c2Se2c8DoM48FZU-WuBXjzD_rw9UZqLfINrDchN5YHU37BIEQNxS3N1PwBKn9K76zMsTE2708E7yeCzPT6T78WQ0p8-f3b_7OXv6bs2xN2o4XrNym4obfBpylIj6CMIaWozf2UEeSH1N9Ngx9Sz8fUZ9mr0xe6F93FnPwFokr6ZA</recordid><startdate>20240705</startdate><enddate>20240705</enddate><creator>Lee, Ming-Ming</creator><creator>Zuo, Yi</creator><creator>Steiling, Katrina</creator><creator>Mizgerd, Joseph P</creator><creator>Kalesan, Bindu</creator><creator>Walkey, Allan J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4685-6894</orcidid></search><sort><creationdate>20240705</creationdate><title>Clinical risk factors and blood protein biomarkers of 10-year pneumonia risk</title><author>Lee, Ming-Ming ; Zuo, Yi ; Steiling, Katrina ; Mizgerd, Joseph P ; Kalesan, Bindu ; Walkey, Allan J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c572t-8c7531561ee0788111e311fd39c472db5c5a19440a18a6f048df433f8a37e9dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Biology and Life Sciences</topic><topic>Biomarkers</topic><topic>Biomarkers - blood</topic><topic>Blood proteins</topic><topic>Blood Proteins - analysis</topic><topic>Body mass index</topic><topic>C-reactive protein</topic><topic>Cardiac arrhythmia</topic><topic>Chronic illnesses</topic><topic>Cohort Studies</topic><topic>Comorbidity</topic><topic>Congestive heart failure</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Exercise</topic><topic>Female</topic><topic>Heart failure</topic><topic>Humans</topic><topic>Immunoassay</topic><topic>Immunoassays</topic><topic>Inflammation</topic><topic>Kidney diseases</topic><topic>Kinases</topic><topic>Lung diseases</topic><topic>Male</topic><topic>Matrix metalloproteinases</topic><topic>Medicaid</topic><topic>Medicare</topic><topic>Medicine and Health Sciences</topic><topic>Metalloproteinase</topic><topic>Missing data</topic><topic>Offspring</topic><topic>Pneumonia</topic><topic>Pneumonia - blood</topic><topic>Pneumonia - epidemiology</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Risk Factors</topic><topic>Serum proteins</topic><topic>Statistical analysis</topic><topic>United States - epidemiology</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Ming-Ming</creatorcontrib><creatorcontrib>Zuo, Yi</creatorcontrib><creatorcontrib>Steiling, Katrina</creatorcontrib><creatorcontrib>Mizgerd, Joseph P</creatorcontrib><creatorcontrib>Kalesan, Bindu</creatorcontrib><creatorcontrib>Walkey, Allan J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Ming-Ming</au><au>Zuo, Yi</au><au>Steiling, Katrina</au><au>Mizgerd, Joseph P</au><au>Kalesan, Bindu</au><au>Walkey, Allan J</au><au>Santulli, Gaetano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clinical risk factors and blood protein biomarkers of 10-year pneumonia risk</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-07-05</date><risdate>2024</risdate><volume>19</volume><issue>7</issue><spage>e0296139</spage><pages>e0296139-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Chronic inflammation may increase susceptibility to pneumonia.
To explore associations between clinical comorbidities, serum protein immunoassays, and long-term pneumonia risk.
Framingham Heart Study Offspring Cohort participants ≥65 years were linked to their Centers for Medicare Services claims data. Clinical data and 88 serum protein immunoassays were evaluated for associations with 10-year incident pneumonia risk using Fine-Gray models for competing risks of death and least absolute shrinkage and selection operators for covariate selection.
We identified 1,370 participants with immunoassays and linkage to Medicare data. During 10 years of follow up, 428 (31%) participants had a pneumonia diagnosis. Chronic pulmonary disease [subdistribution hazard ratio (SHR) 1.87; 95% confidence interval (CI), 1.33-2.61], current smoking (SHR 1.79, CI 1.31-2.45), heart failure (SHR 1.74, CI 1.10-2.74), atrial fibrillation/flutter (SHR 1.43, CI 1.06-1.93), diabetes (SHR 1.36, CI 1.05-1.75), hospitalization within one year (SHR 1.34, CI 1.09-1.65), and age (SHR 1.06 per year, CI 1.04-1.08) were associated with pneumonia. Three baseline serum protein measurements were associated with pneumonia risk independent of measured clinical factors: growth differentiation factor 15 (SHR 1.32; CI 1.02-1.69), C-reactive protein (SHR 1.16, CI 1.06-1.27) and matrix metallopeptidase 8 (SHR 1.14, CI 1.01-1.30). Addition of C-reactive protein to the clinical model improved prediction (Akaike information criterion 4950 from 4960; C-statistic of 0.64 from 0.62).
Clinical comorbidities and serum immunoassays were predictive of pneumonia risk. C-reactive protein, a routinely-available measure of inflammation, modestly improved pneumonia risk prediction over clinical factors. Our findings support the hypothesis that prior inflammation may increase the risk of pneumonia.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>38968193</pmid><doi>10.1371/journal.pone.0296139</doi><tpages>e0296139</tpages><orcidid>https://orcid.org/0000-0003-4685-6894</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2024-07, Vol.19 (7), p.e0296139 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_3076243275 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Aged Aged, 80 and over Biology and Life Sciences Biomarkers Biomarkers - blood Blood proteins Blood Proteins - analysis Body mass index C-reactive protein Cardiac arrhythmia Chronic illnesses Cohort Studies Comorbidity Congestive heart failure Diabetes Diabetes mellitus Exercise Female Heart failure Humans Immunoassay Immunoassays Inflammation Kidney diseases Kinases Lung diseases Male Matrix metalloproteinases Medicaid Medicare Medicine and Health Sciences Metalloproteinase Missing data Offspring Pneumonia Pneumonia - blood Pneumonia - epidemiology Proteins Research and Analysis Methods Risk Factors Serum proteins Statistical analysis United States - epidemiology Variables |
title | Clinical risk factors and blood protein biomarkers of 10-year pneumonia risk |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A24%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clinical%20risk%20factors%20and%20blood%20protein%20biomarkers%20of%2010-year%20pneumonia%20risk&rft.jtitle=PloS%20one&rft.au=Lee,%20Ming-Ming&rft.date=2024-07-05&rft.volume=19&rft.issue=7&rft.spage=e0296139&rft.pages=e0296139-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0296139&rft_dat=%3Cgale_plos_%3EA800174294%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3076243275&rft_id=info:pmid/38968193&rft_galeid=A800174294&rft_doaj_id=oai_doaj_org_article_d041425d74bb48a19c44f823cc0643ca&rfr_iscdi=true |