Modeling normal mouse uterine contraction and placental perfusion with non-invasive longitudinal dynamic contrast enhancement MRI
The placenta is a transient organ critical for fetal development. Disruptions of normal placental functions can impact health throughout an individual's entire life. Although being recognized by the NIH Human Placenta Project as an important organ, the placenta remains understudied, partly beca...
Gespeichert in:
Veröffentlicht in: | PloS one 2024-07, Vol.19 (7), p.e0303957 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | e0303957 |
container_title | PloS one |
container_volume | 19 |
creator | Cortes, Devin Raine Everaldo Stapleton, Margaret C Schwab, Kristina E West, Dalton Coulson, Noah W O'Donnell, Mary Gemmel Christodoulou, Anthony G Powers, Robert W Wu, Yijen L |
description | The placenta is a transient organ critical for fetal development. Disruptions of normal placental functions can impact health throughout an individual's entire life. Although being recognized by the NIH Human Placenta Project as an important organ, the placenta remains understudied, partly because of a lack of non-invasive tools for longitudinally evaluation for key aspects of placental functionalities.
Our goal is to create a non-invasive preclinical imaging pipeline that can longitudinally probe murine placental health in vivo. We use advanced imaging processing schemes to establish functional biomarkers for non-invasive longitudinal evaluation of placental development.
We implement dynamic contrast enhancement magnetic resonance imaging (DCE-MRI) and analysis pipeline to quantify uterine contraction and placental perfusion dynamics. We use optic flow and time-frequency analysis to quantify and characterize contraction-related placental motion. Our novel imaging and analysis pipeline uses subcutaneous administration of gadolinium for steepest slope-based perfusion evaluation, enabling non-invasive longitudinal monitoring.
We demonstrate that the placenta exhibits spatially asymmetric contractile motion that develops from E14.5 to E17.5. Additionally, we see that placental perfusion, perfusion delivery rate, and substrate delivery all increase from E14.5 to E17.5, with the High Perfusion Chamber (HPC) leading the placental changes that occur from E14.5 to E17.5.
We advance the placental perfusion chamber paradigm with a novel, physiologically based threshold model for chamber localization and demonstrate spatially varying placental chambers using multiple functional metrics that assess mouse placental development and remodeling throughout gestation.
Our pipeline enables the non-invasive, longitudinal assessment of multiple placenta functions from a single imaging session. Our pipeline serves as a key toolbox for advancing research in mouse models of placental disease and disorder. |
doi_str_mv | 10.1371/journal.pone.0303957 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3074467414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A799699044</galeid><doaj_id>oai_doaj_org_article_3fb8375ff68140f5918d8cd439c3c7cc</doaj_id><sourcerecordid>A799699044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c596t-4cf831789586d46c70fc908a781c935f7570858401a2a72854cf32e6694edcd33</originalsourceid><addsrcrecordid>eNqNk8tu1DAUhiMEomXgDRBEQkKwmMGOE19WqKq4jNSqUrlsLdexMx459tR2BrrkzXE6aTWDukBZJDr5_t_n4lMULyFYQETgh7UfghN2sfFOLQACiDXkUXEMGarmuALo8d73UfEsxjUADaIYPy2OEGUNABQdF3_OfauscV3pfOiFLXs_RFUOSQXjVCm9S0HIZLwrhWvLjRVSuZS5jQp6iGP8l0mrrHZz47Yimq0qrXedSUNrcn5le-NEb-RkFVOp3Eo4qfrsU55fLp8XT7SwUb2Y3rPix-dP30-_zs8uvixPT87msmE4zWupKYIkJ05xW2NJgJYMUEEolAw1mjQE0IbWAIpKkIo2WYAqhTGrVStbhGbF653vxvrIp-5FjgCpa0xqWGdiuSNaL9Z8E0wvwg33wvDbgA8dFyEZaRVH-ooi0miNKayBbhikLZVtjZhEkkiZvT5Opw1XfU5AjcXbA9PDP86seOe3HMIK4nFms-Ld5BD89aBi4r2JUlkrnMozuk2cQFo1NKNv_kEfLm-iOpErME77cbSjKT8hjGHGQD1Siweo_LQqTzHfNW1y_EDw_kAwzln9Tp0YYuTLb5f_z178PGTf7rErJWxaRW-H8S7GQ7DegTL4GIPS912GgI-rctcNPq4Kn1Yly17tT-hedLcb6C9YkBA8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3074467414</pqid></control><display><type>article</type><title>Modeling normal mouse uterine contraction and placental perfusion with non-invasive longitudinal dynamic contrast enhancement MRI</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Cortes, Devin Raine Everaldo ; Stapleton, Margaret C ; Schwab, Kristina E ; West, Dalton ; Coulson, Noah W ; O'Donnell, Mary Gemmel ; Christodoulou, Anthony G ; Powers, Robert W ; Wu, Yijen L</creator><creatorcontrib>Cortes, Devin Raine Everaldo ; Stapleton, Margaret C ; Schwab, Kristina E ; West, Dalton ; Coulson, Noah W ; O'Donnell, Mary Gemmel ; Christodoulou, Anthony G ; Powers, Robert W ; Wu, Yijen L</creatorcontrib><description>The placenta is a transient organ critical for fetal development. Disruptions of normal placental functions can impact health throughout an individual's entire life. Although being recognized by the NIH Human Placenta Project as an important organ, the placenta remains understudied, partly because of a lack of non-invasive tools for longitudinally evaluation for key aspects of placental functionalities.
Our goal is to create a non-invasive preclinical imaging pipeline that can longitudinally probe murine placental health in vivo. We use advanced imaging processing schemes to establish functional biomarkers for non-invasive longitudinal evaluation of placental development.
We implement dynamic contrast enhancement magnetic resonance imaging (DCE-MRI) and analysis pipeline to quantify uterine contraction and placental perfusion dynamics. We use optic flow and time-frequency analysis to quantify and characterize contraction-related placental motion. Our novel imaging and analysis pipeline uses subcutaneous administration of gadolinium for steepest slope-based perfusion evaluation, enabling non-invasive longitudinal monitoring.
We demonstrate that the placenta exhibits spatially asymmetric contractile motion that develops from E14.5 to E17.5. Additionally, we see that placental perfusion, perfusion delivery rate, and substrate delivery all increase from E14.5 to E17.5, with the High Perfusion Chamber (HPC) leading the placental changes that occur from E14.5 to E17.5.
We advance the placental perfusion chamber paradigm with a novel, physiologically based threshold model for chamber localization and demonstrate spatially varying placental chambers using multiple functional metrics that assess mouse placental development and remodeling throughout gestation.
Our pipeline enables the non-invasive, longitudinal assessment of multiple placenta functions from a single imaging session. Our pipeline serves as a key toolbox for advancing research in mouse models of placental disease and disorder.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0303957</identifier><identifier>PMID: 38950083</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animal models ; Animals ; Biology and Life Sciences ; Biomarkers ; Chambers ; Contractility ; Contrast Media ; Female ; Fetus ; Fetuses ; Flow velocity ; Frequency analysis ; Frequency dependence ; Gadolinium ; Growth ; Image processing ; Localization ; Magnetic resonance ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Medical imaging ; Medical research ; Medicine and Health Sciences ; Medicine, Experimental ; Mice ; Mice, Inbred C57BL ; Morbidity ; Mortality ; Optic flow ; Perfusion ; Physical Sciences ; Physiology ; Placenta ; Placenta - blood supply ; Placenta - diagnostic imaging ; Pregnancy ; Research and Analysis Methods ; Signal processing ; Substrates ; Time series ; Time-frequency analysis ; Uterine Contraction - physiology ; Uterus</subject><ispartof>PloS one, 2024-07, Vol.19 (7), p.e0303957</ispartof><rights>Copyright: © 2024 Cortes et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Cortes et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Cortes et al 2024 Cortes et al</rights><rights>2024 Cortes et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c596t-4cf831789586d46c70fc908a781c935f7570858401a2a72854cf32e6694edcd33</cites><orcidid>0009-0004-8130-8513 ; 0000-0002-7773-6433 ; 0000-0001-9509-5417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11216620/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11216620/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38950083$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cortes, Devin Raine Everaldo</creatorcontrib><creatorcontrib>Stapleton, Margaret C</creatorcontrib><creatorcontrib>Schwab, Kristina E</creatorcontrib><creatorcontrib>West, Dalton</creatorcontrib><creatorcontrib>Coulson, Noah W</creatorcontrib><creatorcontrib>O'Donnell, Mary Gemmel</creatorcontrib><creatorcontrib>Christodoulou, Anthony G</creatorcontrib><creatorcontrib>Powers, Robert W</creatorcontrib><creatorcontrib>Wu, Yijen L</creatorcontrib><title>Modeling normal mouse uterine contraction and placental perfusion with non-invasive longitudinal dynamic contrast enhancement MRI</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The placenta is a transient organ critical for fetal development. Disruptions of normal placental functions can impact health throughout an individual's entire life. Although being recognized by the NIH Human Placenta Project as an important organ, the placenta remains understudied, partly because of a lack of non-invasive tools for longitudinally evaluation for key aspects of placental functionalities.
Our goal is to create a non-invasive preclinical imaging pipeline that can longitudinally probe murine placental health in vivo. We use advanced imaging processing schemes to establish functional biomarkers for non-invasive longitudinal evaluation of placental development.
We implement dynamic contrast enhancement magnetic resonance imaging (DCE-MRI) and analysis pipeline to quantify uterine contraction and placental perfusion dynamics. We use optic flow and time-frequency analysis to quantify and characterize contraction-related placental motion. Our novel imaging and analysis pipeline uses subcutaneous administration of gadolinium for steepest slope-based perfusion evaluation, enabling non-invasive longitudinal monitoring.
We demonstrate that the placenta exhibits spatially asymmetric contractile motion that develops from E14.5 to E17.5. Additionally, we see that placental perfusion, perfusion delivery rate, and substrate delivery all increase from E14.5 to E17.5, with the High Perfusion Chamber (HPC) leading the placental changes that occur from E14.5 to E17.5.
We advance the placental perfusion chamber paradigm with a novel, physiologically based threshold model for chamber localization and demonstrate spatially varying placental chambers using multiple functional metrics that assess mouse placental development and remodeling throughout gestation.
Our pipeline enables the non-invasive, longitudinal assessment of multiple placenta functions from a single imaging session. Our pipeline serves as a key toolbox for advancing research in mouse models of placental disease and disorder.</description><subject>Animal models</subject><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Biomarkers</subject><subject>Chambers</subject><subject>Contractility</subject><subject>Contrast Media</subject><subject>Female</subject><subject>Fetus</subject><subject>Fetuses</subject><subject>Flow velocity</subject><subject>Frequency analysis</subject><subject>Frequency dependence</subject><subject>Gadolinium</subject><subject>Growth</subject><subject>Image processing</subject><subject>Localization</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medical imaging</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Medicine, Experimental</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Morbidity</subject><subject>Mortality</subject><subject>Optic flow</subject><subject>Perfusion</subject><subject>Physical Sciences</subject><subject>Physiology</subject><subject>Placenta</subject><subject>Placenta - blood supply</subject><subject>Placenta - diagnostic imaging</subject><subject>Pregnancy</subject><subject>Research and Analysis Methods</subject><subject>Signal processing</subject><subject>Substrates</subject><subject>Time series</subject><subject>Time-frequency analysis</subject><subject>Uterine Contraction - physiology</subject><subject>Uterus</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk8tu1DAUhiMEomXgDRBEQkKwmMGOE19WqKq4jNSqUrlsLdexMx459tR2BrrkzXE6aTWDukBZJDr5_t_n4lMULyFYQETgh7UfghN2sfFOLQACiDXkUXEMGarmuALo8d73UfEsxjUADaIYPy2OEGUNABQdF3_OfauscV3pfOiFLXs_RFUOSQXjVCm9S0HIZLwrhWvLjRVSuZS5jQp6iGP8l0mrrHZz47Yimq0qrXedSUNrcn5le-NEb-RkFVOp3Eo4qfrsU55fLp8XT7SwUb2Y3rPix-dP30-_zs8uvixPT87msmE4zWupKYIkJ05xW2NJgJYMUEEolAw1mjQE0IbWAIpKkIo2WYAqhTGrVStbhGbF653vxvrIp-5FjgCpa0xqWGdiuSNaL9Z8E0wvwg33wvDbgA8dFyEZaRVH-ooi0miNKayBbhikLZVtjZhEkkiZvT5Opw1XfU5AjcXbA9PDP86seOe3HMIK4nFms-Ld5BD89aBi4r2JUlkrnMozuk2cQFo1NKNv_kEfLm-iOpErME77cbSjKT8hjGHGQD1Siweo_LQqTzHfNW1y_EDw_kAwzln9Tp0YYuTLb5f_z178PGTf7rErJWxaRW-H8S7GQ7DegTL4GIPS912GgI-rctcNPq4Kn1Yly17tT-hedLcb6C9YkBA8</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Cortes, Devin Raine Everaldo</creator><creator>Stapleton, Margaret C</creator><creator>Schwab, Kristina E</creator><creator>West, Dalton</creator><creator>Coulson, Noah W</creator><creator>O'Donnell, Mary Gemmel</creator><creator>Christodoulou, Anthony G</creator><creator>Powers, Robert W</creator><creator>Wu, Yijen L</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0004-8130-8513</orcidid><orcidid>https://orcid.org/0000-0002-7773-6433</orcidid><orcidid>https://orcid.org/0000-0001-9509-5417</orcidid></search><sort><creationdate>20240701</creationdate><title>Modeling normal mouse uterine contraction and placental perfusion with non-invasive longitudinal dynamic contrast enhancement MRI</title><author>Cortes, Devin Raine Everaldo ; Stapleton, Margaret C ; Schwab, Kristina E ; West, Dalton ; Coulson, Noah W ; O'Donnell, Mary Gemmel ; Christodoulou, Anthony G ; Powers, Robert W ; Wu, Yijen L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c596t-4cf831789586d46c70fc908a781c935f7570858401a2a72854cf32e6694edcd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Biomarkers</topic><topic>Chambers</topic><topic>Contractility</topic><topic>Contrast Media</topic><topic>Female</topic><topic>Fetus</topic><topic>Fetuses</topic><topic>Flow velocity</topic><topic>Frequency analysis</topic><topic>Frequency dependence</topic><topic>Gadolinium</topic><topic>Growth</topic><topic>Image processing</topic><topic>Localization</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medical imaging</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Medicine, Experimental</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Morbidity</topic><topic>Mortality</topic><topic>Optic flow</topic><topic>Perfusion</topic><topic>Physical Sciences</topic><topic>Physiology</topic><topic>Placenta</topic><topic>Placenta - blood supply</topic><topic>Placenta - diagnostic imaging</topic><topic>Pregnancy</topic><topic>Research and Analysis Methods</topic><topic>Signal processing</topic><topic>Substrates</topic><topic>Time series</topic><topic>Time-frequency analysis</topic><topic>Uterine Contraction - physiology</topic><topic>Uterus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cortes, Devin Raine Everaldo</creatorcontrib><creatorcontrib>Stapleton, Margaret C</creatorcontrib><creatorcontrib>Schwab, Kristina E</creatorcontrib><creatorcontrib>West, Dalton</creatorcontrib><creatorcontrib>Coulson, Noah W</creatorcontrib><creatorcontrib>O'Donnell, Mary Gemmel</creatorcontrib><creatorcontrib>Christodoulou, Anthony G</creatorcontrib><creatorcontrib>Powers, Robert W</creatorcontrib><creatorcontrib>Wu, Yijen L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cortes, Devin Raine Everaldo</au><au>Stapleton, Margaret C</au><au>Schwab, Kristina E</au><au>West, Dalton</au><au>Coulson, Noah W</au><au>O'Donnell, Mary Gemmel</au><au>Christodoulou, Anthony G</au><au>Powers, Robert W</au><au>Wu, Yijen L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling normal mouse uterine contraction and placental perfusion with non-invasive longitudinal dynamic contrast enhancement MRI</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>19</volume><issue>7</issue><spage>e0303957</spage><pages>e0303957-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The placenta is a transient organ critical for fetal development. Disruptions of normal placental functions can impact health throughout an individual's entire life. Although being recognized by the NIH Human Placenta Project as an important organ, the placenta remains understudied, partly because of a lack of non-invasive tools for longitudinally evaluation for key aspects of placental functionalities.
Our goal is to create a non-invasive preclinical imaging pipeline that can longitudinally probe murine placental health in vivo. We use advanced imaging processing schemes to establish functional biomarkers for non-invasive longitudinal evaluation of placental development.
We implement dynamic contrast enhancement magnetic resonance imaging (DCE-MRI) and analysis pipeline to quantify uterine contraction and placental perfusion dynamics. We use optic flow and time-frequency analysis to quantify and characterize contraction-related placental motion. Our novel imaging and analysis pipeline uses subcutaneous administration of gadolinium for steepest slope-based perfusion evaluation, enabling non-invasive longitudinal monitoring.
We demonstrate that the placenta exhibits spatially asymmetric contractile motion that develops from E14.5 to E17.5. Additionally, we see that placental perfusion, perfusion delivery rate, and substrate delivery all increase from E14.5 to E17.5, with the High Perfusion Chamber (HPC) leading the placental changes that occur from E14.5 to E17.5.
We advance the placental perfusion chamber paradigm with a novel, physiologically based threshold model for chamber localization and demonstrate spatially varying placental chambers using multiple functional metrics that assess mouse placental development and remodeling throughout gestation.
Our pipeline enables the non-invasive, longitudinal assessment of multiple placenta functions from a single imaging session. Our pipeline serves as a key toolbox for advancing research in mouse models of placental disease and disorder.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>38950083</pmid><doi>10.1371/journal.pone.0303957</doi><tpages>e0303957</tpages><orcidid>https://orcid.org/0009-0004-8130-8513</orcidid><orcidid>https://orcid.org/0000-0002-7773-6433</orcidid><orcidid>https://orcid.org/0000-0001-9509-5417</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2024-07, Vol.19 (7), p.e0303957 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_3074467414 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Animal models Animals Biology and Life Sciences Biomarkers Chambers Contractility Contrast Media Female Fetus Fetuses Flow velocity Frequency analysis Frequency dependence Gadolinium Growth Image processing Localization Magnetic resonance Magnetic resonance imaging Magnetic Resonance Imaging - methods Medical imaging Medical research Medicine and Health Sciences Medicine, Experimental Mice Mice, Inbred C57BL Morbidity Mortality Optic flow Perfusion Physical Sciences Physiology Placenta Placenta - blood supply Placenta - diagnostic imaging Pregnancy Research and Analysis Methods Signal processing Substrates Time series Time-frequency analysis Uterine Contraction - physiology Uterus |
title | Modeling normal mouse uterine contraction and placental perfusion with non-invasive longitudinal dynamic contrast enhancement MRI |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T16%3A50%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20normal%20mouse%20uterine%20contraction%20and%20placental%20perfusion%20with%20non-invasive%20longitudinal%20dynamic%20contrast%20enhancement%20MRI&rft.jtitle=PloS%20one&rft.au=Cortes,%20Devin%20Raine%20Everaldo&rft.date=2024-07-01&rft.volume=19&rft.issue=7&rft.spage=e0303957&rft.pages=e0303957-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0303957&rft_dat=%3Cgale_plos_%3EA799699044%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3074467414&rft_id=info:pmid/38950083&rft_galeid=A799699044&rft_doaj_id=oai_doaj_org_article_3fb8375ff68140f5918d8cd439c3c7cc&rfr_iscdi=true |