How strongly does diet variation explain variation in isotope values of animal consumers?
Analysis of stable isotopes in consumers is used commonly to study their ecological and/or environmental niche. There is, however, considerable debate regarding how isotopic values relate to diet and how other sources of variation confound this link, which can undermine the utility. From the analysi...
Gespeichert in:
Veröffentlicht in: | PloS one 2024-06, Vol.19 (6), p.e0301900 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | e0301900 |
container_title | PloS one |
container_volume | 19 |
creator | Arnoldi, Jean-François Bortoluzzi, Jenny Rose Rowland, Hugh Harrod, Chris Parnell, Andrew C Payne, Nicholas Donohue, Ian Jackson, Andrew L |
description | Analysis of stable isotopes in consumers is used commonly to study their ecological and/or environmental niche. There is, however, considerable debate regarding how isotopic values relate to diet and how other sources of variation confound this link, which can undermine the utility. From the analysis of a simple, but general, model of isotopic incorporation in consumer organisms, we examine the relationship between isotopic variance among individuals, and diet variability within a consumer population. We show that variance in consumer isotope values is directly proportional to variation in diet (through Simpson indices), to the number of isotopically distinct food sources in the diet, and to the baseline variation within and among the isotope values of the food sources. Additionally, when considering temporal diet variation within a consumer we identify the interplay between diet turnover rates and tissue turnover rates that controls the sensitivity of stable isotopes to detect diet variation. Our work demonstrates that variation in the stable isotope values of consumers reflect variation in their diet. This relationship, however, can be confounded with other factors to the extent that they may mask the signal coming from diet. We show how simple quantitative corrections can recover a direct 1:1 correlation in some situations, and in others we can adjust our interpretation in light of the new understanding arising from our models. Our framework provides guidance for the design and analysis of empirical studies where the goal is to infer niche width from stable isotope data. |
doi_str_mv | 10.1371/journal.pone.0301900 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3073137013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A799228760</galeid><doaj_id>oai_doaj_org_article_3cd97bfb81a64ffb8ac5139a5bd9fd7d</doaj_id><sourcerecordid>A799228760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c676t-ba27fe3634c5c09eade213ff1c35cf31f3ef819da9d866d23b82f41e0e958d83</originalsourceid><addsrcrecordid>eNqNk19v0zAUxSMEYmPwDRBEQkLsocXOzT8_TdUEtFKlSTAh8WQ59nXryY2LnZTt2-PSbGqmPaA8OL75nWP7ODdJ3lIypVDRzzeu962w061rcUqAUEbIs-SUMsgmZUbg-dH7SfIqhBtCCqjL8mVyAjWDoqzL0-TX3P1JQ-ddu7J3qXIYUmWwS3fCG9EZ16Z4u7XCtEeVODHBdW6LsWj7KHE6Fa3ZCJtK14Z-gz5cvE5eaGEDvhnGs-T665fry_lkefVtcTlbTmRZld2kEVmlEUrIZSEJQ6Ewo6A1lVBIDVQD6poyJZiKe1cZNHWmc4oEWVGrGs6S9wfbrXWBD6EEDqSCGBOhEInFgVBO3PCtj_v0d9wJw_8VnF9x4TsjLXKQilWNbmoqylzHUciCAhNFo5hWlYpeF8NqfbNBJbHtvLAj0_GX1qz5yu04pRklVVVGh_ODw_qRbj5b8n2N5FVOCcCORvbTsJp3v2POHd-YINFa0aLrD4fMgORZEdEPj9CnoxiolYinNa12cZNyb8pnFWNZVlclidT0CSo-CjcmXjBqE-sjwflIEJkOb7uV6EPgix_f_5-9-jlmPx6xaxS2Wwdn-_1fGMZgfgCldyF41A_JUsL33XKfBt93Cx-6JcreHd_mg-i-PeAv0mMQGA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3073137013</pqid></control><display><type>article</type><title>How strongly does diet variation explain variation in isotope values of animal consumers?</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Arnoldi, Jean-François ; Bortoluzzi, Jenny Rose ; Rowland, Hugh ; Harrod, Chris ; Parnell, Andrew C ; Payne, Nicholas ; Donohue, Ian ; Jackson, Andrew L</creator><creatorcontrib>Arnoldi, Jean-François ; Bortoluzzi, Jenny Rose ; Rowland, Hugh ; Harrod, Chris ; Parnell, Andrew C ; Payne, Nicholas ; Donohue, Ian ; Jackson, Andrew L</creatorcontrib><description>Analysis of stable isotopes in consumers is used commonly to study their ecological and/or environmental niche. There is, however, considerable debate regarding how isotopic values relate to diet and how other sources of variation confound this link, which can undermine the utility. From the analysis of a simple, but general, model of isotopic incorporation in consumer organisms, we examine the relationship between isotopic variance among individuals, and diet variability within a consumer population. We show that variance in consumer isotope values is directly proportional to variation in diet (through Simpson indices), to the number of isotopically distinct food sources in the diet, and to the baseline variation within and among the isotope values of the food sources. Additionally, when considering temporal diet variation within a consumer we identify the interplay between diet turnover rates and tissue turnover rates that controls the sensitivity of stable isotopes to detect diet variation. Our work demonstrates that variation in the stable isotope values of consumers reflect variation in their diet. This relationship, however, can be confounded with other factors to the extent that they may mask the signal coming from diet. We show how simple quantitative corrections can recover a direct 1:1 correlation in some situations, and in others we can adjust our interpretation in light of the new understanding arising from our models. Our framework provides guidance for the design and analysis of empirical studies where the goal is to infer niche width from stable isotope data.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0301900</identifier><identifier>PMID: 38935686</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Biology and Life Sciences ; Biomass ; Carbon Isotopes - analysis ; Consumer behavior ; Consumers ; Diet ; Ecology and Environmental Sciences ; Ecology, environment ; Food ; Food sources ; Isotopes ; Isotopes - analysis ; Life Sciences ; Medicine and Health Sciences ; Metabolism ; Niches ; Physical Sciences ; Physiology ; Ratios ; Stable isotopes ; Turnover rate ; Variation</subject><ispartof>PloS one, 2024-06, Vol.19 (6), p.e0301900</ispartof><rights>Copyright: © 2024 Arnoldi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Arnoldi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2024 Arnoldi et al 2024 Arnoldi et al</rights><rights>2024 Arnoldi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c676t-ba27fe3634c5c09eade213ff1c35cf31f3ef819da9d866d23b82f41e0e958d83</cites><orcidid>0000-0001-7334-0434 ; 0000-0002-5353-1556</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11210776/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11210776/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38935686$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04741033$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Arnoldi, Jean-François</creatorcontrib><creatorcontrib>Bortoluzzi, Jenny Rose</creatorcontrib><creatorcontrib>Rowland, Hugh</creatorcontrib><creatorcontrib>Harrod, Chris</creatorcontrib><creatorcontrib>Parnell, Andrew C</creatorcontrib><creatorcontrib>Payne, Nicholas</creatorcontrib><creatorcontrib>Donohue, Ian</creatorcontrib><creatorcontrib>Jackson, Andrew L</creatorcontrib><title>How strongly does diet variation explain variation in isotope values of animal consumers?</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Analysis of stable isotopes in consumers is used commonly to study their ecological and/or environmental niche. There is, however, considerable debate regarding how isotopic values relate to diet and how other sources of variation confound this link, which can undermine the utility. From the analysis of a simple, but general, model of isotopic incorporation in consumer organisms, we examine the relationship between isotopic variance among individuals, and diet variability within a consumer population. We show that variance in consumer isotope values is directly proportional to variation in diet (through Simpson indices), to the number of isotopically distinct food sources in the diet, and to the baseline variation within and among the isotope values of the food sources. Additionally, when considering temporal diet variation within a consumer we identify the interplay between diet turnover rates and tissue turnover rates that controls the sensitivity of stable isotopes to detect diet variation. Our work demonstrates that variation in the stable isotope values of consumers reflect variation in their diet. This relationship, however, can be confounded with other factors to the extent that they may mask the signal coming from diet. We show how simple quantitative corrections can recover a direct 1:1 correlation in some situations, and in others we can adjust our interpretation in light of the new understanding arising from our models. Our framework provides guidance for the design and analysis of empirical studies where the goal is to infer niche width from stable isotope data.</description><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Biomass</subject><subject>Carbon Isotopes - analysis</subject><subject>Consumer behavior</subject><subject>Consumers</subject><subject>Diet</subject><subject>Ecology and Environmental Sciences</subject><subject>Ecology, environment</subject><subject>Food</subject><subject>Food sources</subject><subject>Isotopes</subject><subject>Isotopes - analysis</subject><subject>Life Sciences</subject><subject>Medicine and Health Sciences</subject><subject>Metabolism</subject><subject>Niches</subject><subject>Physical Sciences</subject><subject>Physiology</subject><subject>Ratios</subject><subject>Stable isotopes</subject><subject>Turnover rate</subject><subject>Variation</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk19v0zAUxSMEYmPwDRBEQkLsocXOzT8_TdUEtFKlSTAh8WQ59nXryY2LnZTt2-PSbGqmPaA8OL75nWP7ODdJ3lIypVDRzzeu962w061rcUqAUEbIs-SUMsgmZUbg-dH7SfIqhBtCCqjL8mVyAjWDoqzL0-TX3P1JQ-ddu7J3qXIYUmWwS3fCG9EZ16Z4u7XCtEeVODHBdW6LsWj7KHE6Fa3ZCJtK14Z-gz5cvE5eaGEDvhnGs-T665fry_lkefVtcTlbTmRZld2kEVmlEUrIZSEJQ6Ewo6A1lVBIDVQD6poyJZiKe1cZNHWmc4oEWVGrGs6S9wfbrXWBD6EEDqSCGBOhEInFgVBO3PCtj_v0d9wJw_8VnF9x4TsjLXKQilWNbmoqylzHUciCAhNFo5hWlYpeF8NqfbNBJbHtvLAj0_GX1qz5yu04pRklVVVGh_ODw_qRbj5b8n2N5FVOCcCORvbTsJp3v2POHd-YINFa0aLrD4fMgORZEdEPj9CnoxiolYinNa12cZNyb8pnFWNZVlclidT0CSo-CjcmXjBqE-sjwflIEJkOb7uV6EPgix_f_5-9-jlmPx6xaxS2Wwdn-_1fGMZgfgCldyF41A_JUsL33XKfBt93Cx-6JcreHd_mg-i-PeAv0mMQGA</recordid><startdate>20240627</startdate><enddate>20240627</enddate><creator>Arnoldi, Jean-François</creator><creator>Bortoluzzi, Jenny Rose</creator><creator>Rowland, Hugh</creator><creator>Harrod, Chris</creator><creator>Parnell, Andrew C</creator><creator>Payne, Nicholas</creator><creator>Donohue, Ian</creator><creator>Jackson, Andrew L</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7334-0434</orcidid><orcidid>https://orcid.org/0000-0002-5353-1556</orcidid></search><sort><creationdate>20240627</creationdate><title>How strongly does diet variation explain variation in isotope values of animal consumers?</title><author>Arnoldi, Jean-François ; Bortoluzzi, Jenny Rose ; Rowland, Hugh ; Harrod, Chris ; Parnell, Andrew C ; Payne, Nicholas ; Donohue, Ian ; Jackson, Andrew L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c676t-ba27fe3634c5c09eade213ff1c35cf31f3ef819da9d866d23b82f41e0e958d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Biomass</topic><topic>Carbon Isotopes - analysis</topic><topic>Consumer behavior</topic><topic>Consumers</topic><topic>Diet</topic><topic>Ecology and Environmental Sciences</topic><topic>Ecology, environment</topic><topic>Food</topic><topic>Food sources</topic><topic>Isotopes</topic><topic>Isotopes - analysis</topic><topic>Life Sciences</topic><topic>Medicine and Health Sciences</topic><topic>Metabolism</topic><topic>Niches</topic><topic>Physical Sciences</topic><topic>Physiology</topic><topic>Ratios</topic><topic>Stable isotopes</topic><topic>Turnover rate</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arnoldi, Jean-François</creatorcontrib><creatorcontrib>Bortoluzzi, Jenny Rose</creatorcontrib><creatorcontrib>Rowland, Hugh</creatorcontrib><creatorcontrib>Harrod, Chris</creatorcontrib><creatorcontrib>Parnell, Andrew C</creatorcontrib><creatorcontrib>Payne, Nicholas</creatorcontrib><creatorcontrib>Donohue, Ian</creatorcontrib><creatorcontrib>Jackson, Andrew L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arnoldi, Jean-François</au><au>Bortoluzzi, Jenny Rose</au><au>Rowland, Hugh</au><au>Harrod, Chris</au><au>Parnell, Andrew C</au><au>Payne, Nicholas</au><au>Donohue, Ian</au><au>Jackson, Andrew L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How strongly does diet variation explain variation in isotope values of animal consumers?</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-06-27</date><risdate>2024</risdate><volume>19</volume><issue>6</issue><spage>e0301900</spage><pages>e0301900-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Analysis of stable isotopes in consumers is used commonly to study their ecological and/or environmental niche. There is, however, considerable debate regarding how isotopic values relate to diet and how other sources of variation confound this link, which can undermine the utility. From the analysis of a simple, but general, model of isotopic incorporation in consumer organisms, we examine the relationship between isotopic variance among individuals, and diet variability within a consumer population. We show that variance in consumer isotope values is directly proportional to variation in diet (through Simpson indices), to the number of isotopically distinct food sources in the diet, and to the baseline variation within and among the isotope values of the food sources. Additionally, when considering temporal diet variation within a consumer we identify the interplay between diet turnover rates and tissue turnover rates that controls the sensitivity of stable isotopes to detect diet variation. Our work demonstrates that variation in the stable isotope values of consumers reflect variation in their diet. This relationship, however, can be confounded with other factors to the extent that they may mask the signal coming from diet. We show how simple quantitative corrections can recover a direct 1:1 correlation in some situations, and in others we can adjust our interpretation in light of the new understanding arising from our models. Our framework provides guidance for the design and analysis of empirical studies where the goal is to infer niche width from stable isotope data.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>38935686</pmid><doi>10.1371/journal.pone.0301900</doi><orcidid>https://orcid.org/0000-0001-7334-0434</orcidid><orcidid>https://orcid.org/0000-0002-5353-1556</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2024-06, Vol.19 (6), p.e0301900 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_3073137013 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Animals Biology and Life Sciences Biomass Carbon Isotopes - analysis Consumer behavior Consumers Diet Ecology and Environmental Sciences Ecology, environment Food Food sources Isotopes Isotopes - analysis Life Sciences Medicine and Health Sciences Metabolism Niches Physical Sciences Physiology Ratios Stable isotopes Turnover rate Variation |
title | How strongly does diet variation explain variation in isotope values of animal consumers? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T09%3A53%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20strongly%20does%20diet%20variation%20explain%20variation%20in%20isotope%20values%20of%20animal%20consumers?&rft.jtitle=PloS%20one&rft.au=Arnoldi,%20Jean-Fran%C3%A7ois&rft.date=2024-06-27&rft.volume=19&rft.issue=6&rft.spage=e0301900&rft.pages=e0301900-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0301900&rft_dat=%3Cgale_plos_%3EA799228760%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3073137013&rft_id=info:pmid/38935686&rft_galeid=A799228760&rft_doaj_id=oai_doaj_org_article_3cd97bfb81a64ffb8ac5139a5bd9fd7d&rfr_iscdi=true |