Identification of protein signatures for lung cancer subtypes based on BPSO method

The objective of this study was to identify protein biomarkers that can distinguish between LUAD and LUSC, critical for personalized treatment plans. The proteomic profiling data of LUAD and LUSC samples from TCPA database, along with phenotype and survival information from TCGA database were downlo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2023-12, Vol.18 (12), p.e0294243-e0294243
Hauptverfasser: Wang, Jihan, Wang, Hanping, Xu, Jing, Song, Qiying, Zhou, Baozhen, Shangguan, Jingbo, Xue, Mengju, Wang, Yangyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0294243
container_issue 12
container_start_page e0294243
container_title PloS one
container_volume 18
creator Wang, Jihan
Wang, Hanping
Xu, Jing
Song, Qiying
Zhou, Baozhen
Shangguan, Jingbo
Xue, Mengju
Wang, Yangyang
description The objective of this study was to identify protein biomarkers that can distinguish between LUAD and LUSC, critical for personalized treatment plans. The proteomic profiling data of LUAD and LUSC samples from TCPA database, along with phenotype and survival information from TCGA database were downloaded and preprocessed for analysis. We used BPSO feature selection method and identified 10 candidate protein biomarkers that have better classifying performance, as analyzed by t-SNE and PCA algorithms. To explore the causalities among these proteins and their associations with tumor subtypes, we conducted the PCStable algorithm to construct a regulatory network. Results indicated that 4 proteins, MIG6, CD26, NF2, and INPP4B, were directly linked to the lung cancer subtypes and may be useful in guiding therapeutic decision-making. Besides, spearman correlation, Cox proportional hazard model and Kaplan-Meier curve was employed to validate the biological significance of the candidate proteins. In summary, our study highlights the importance of protein biomarkers in the classification of lung cancer subtypes and the potential of computational methods for identifying key biomarkers and understanding their underlying biological mechanisms.
doi_str_mv 10.1371/journal.pone.0294243
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3072928615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A775659913</galeid><doaj_id>oai_doaj_org_article_e7d88f61bed24ac89b48fc0ddb3e80f3</doaj_id><sourcerecordid>A775659913</sourcerecordid><originalsourceid>FETCH-LOGICAL-c586t-35efbc468a63c2f5ea19a688d35ef651aa450032df68c52d14fc8994571d87d3</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhgdRbK3-A9EBQfRi13xNJnNZix8LhZW2eBsyyclsltnJmmTA_nsz7rR0pReSi4RznveccM5bFK8xWmJa409bP4ZB9cu9H2CJSMMIo0-KU9xQsuAE0acP3ifFixi3CFVUcP68OKECccQadlpcrQwMyVmnVXJ-KL0t98EncEMZXTeoNAaIpfWh7MehK7UaNIQyjm263edEqyKYMus-_7helztIG29eFs-s6iO8mu-z4ubrl5uL74vL9bfVxfnlQleCpwWtwLaacaE41cRWoHCjuBBmSvAKK8UqhCgxlgtdEYOZ1aJpWFVjI2pDz4q3h7L73kc5TyNKimrSEMFxlYnVgTBebeU-uJ0Kt9IrJ_8GfOikCsnpHiTURgjLcQuGMJX7tExYjYxpKQhkaa71Ye4W_K8RYpI7FzX0vRrAj1GSZloB52hC3_2DPv65mepU7u8G61NQeioqz-u64lXT4KnW8hEqHwM7p_PmrcvxI8HHI0FmEvxOnRpjlKvrq_9n1z-P2fcP2A2oPm2i78fJNPEYZAdQBx9jAHs_eIzkZNy7acjJuHI2bpa9mYc2tjsw96I7p9I_MD_m_A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072928615</pqid></control><display><type>article</type><title>Identification of protein signatures for lung cancer subtypes based on BPSO method</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Jihan ; Wang, Hanping ; Xu, Jing ; Song, Qiying ; Zhou, Baozhen ; Shangguan, Jingbo ; Xue, Mengju ; Wang, Yangyang</creator><contributor>Wu, Bingli</contributor><creatorcontrib>Wang, Jihan ; Wang, Hanping ; Xu, Jing ; Song, Qiying ; Zhou, Baozhen ; Shangguan, Jingbo ; Xue, Mengju ; Wang, Yangyang ; Wu, Bingli</creatorcontrib><description>The objective of this study was to identify protein biomarkers that can distinguish between LUAD and LUSC, critical for personalized treatment plans. The proteomic profiling data of LUAD and LUSC samples from TCPA database, along with phenotype and survival information from TCGA database were downloaded and preprocessed for analysis. We used BPSO feature selection method and identified 10 candidate protein biomarkers that have better classifying performance, as analyzed by t-SNE and PCA algorithms. To explore the causalities among these proteins and their associations with tumor subtypes, we conducted the PCStable algorithm to construct a regulatory network. Results indicated that 4 proteins, MIG6, CD26, NF2, and INPP4B, were directly linked to the lung cancer subtypes and may be useful in guiding therapeutic decision-making. Besides, spearman correlation, Cox proportional hazard model and Kaplan-Meier curve was employed to validate the biological significance of the candidate proteins. In summary, our study highlights the importance of protein biomarkers in the classification of lung cancer subtypes and the potential of computational methods for identifying key biomarkers and understanding their underlying biological mechanisms.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0294243</identifier><identifier>PMID: 38060494</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Biomarkers ; Care and treatment ; Classification ; Cytokeratin ; Datasets ; Decision making ; Diagnosis ; Dipeptidyl-peptidase IV ; Evaluation ; Feature selection ; Head &amp; neck cancer ; Lung cancer ; Lung diseases ; Mathematical optimization ; Medical prognosis ; Medical research ; Methods ; Optimization techniques ; Phenotypes ; Protein expression ; Proteins ; Proteomics ; Squamous cell carcinoma ; Statistical models ; Swarm intelligence ; Tumors ; Velocity</subject><ispartof>PloS one, 2023-12, Vol.18 (12), p.e0294243-e0294243</ispartof><rights>Copyright: © 2023 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c586t-35efbc468a63c2f5ea19a688d35ef651aa450032df68c52d14fc8994571d87d3</cites><orcidid>0000-0002-4753-7193</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0294243&amp;type=printable$$EPDF$$P50$$Gplos$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.plos.org/plosone/article?id=10.1371/journal.pone.0294243$$EHTML$$P50$$Gplos$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,2915,23845,27901,27902,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38060494$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wu, Bingli</contributor><creatorcontrib>Wang, Jihan</creatorcontrib><creatorcontrib>Wang, Hanping</creatorcontrib><creatorcontrib>Xu, Jing</creatorcontrib><creatorcontrib>Song, Qiying</creatorcontrib><creatorcontrib>Zhou, Baozhen</creatorcontrib><creatorcontrib>Shangguan, Jingbo</creatorcontrib><creatorcontrib>Xue, Mengju</creatorcontrib><creatorcontrib>Wang, Yangyang</creatorcontrib><title>Identification of protein signatures for lung cancer subtypes based on BPSO method</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The objective of this study was to identify protein biomarkers that can distinguish between LUAD and LUSC, critical for personalized treatment plans. The proteomic profiling data of LUAD and LUSC samples from TCPA database, along with phenotype and survival information from TCGA database were downloaded and preprocessed for analysis. We used BPSO feature selection method and identified 10 candidate protein biomarkers that have better classifying performance, as analyzed by t-SNE and PCA algorithms. To explore the causalities among these proteins and their associations with tumor subtypes, we conducted the PCStable algorithm to construct a regulatory network. Results indicated that 4 proteins, MIG6, CD26, NF2, and INPP4B, were directly linked to the lung cancer subtypes and may be useful in guiding therapeutic decision-making. Besides, spearman correlation, Cox proportional hazard model and Kaplan-Meier curve was employed to validate the biological significance of the candidate proteins. In summary, our study highlights the importance of protein biomarkers in the classification of lung cancer subtypes and the potential of computational methods for identifying key biomarkers and understanding their underlying biological mechanisms.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Biomarkers</subject><subject>Care and treatment</subject><subject>Classification</subject><subject>Cytokeratin</subject><subject>Datasets</subject><subject>Decision making</subject><subject>Diagnosis</subject><subject>Dipeptidyl-peptidase IV</subject><subject>Evaluation</subject><subject>Feature selection</subject><subject>Head &amp; neck cancer</subject><subject>Lung cancer</subject><subject>Lung diseases</subject><subject>Mathematical optimization</subject><subject>Medical prognosis</subject><subject>Medical research</subject><subject>Methods</subject><subject>Optimization techniques</subject><subject>Phenotypes</subject><subject>Protein expression</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Squamous cell carcinoma</subject><subject>Statistical models</subject><subject>Swarm intelligence</subject><subject>Tumors</subject><subject>Velocity</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1rFDEUhgdRbK3-A9EBQfRi13xNJnNZix8LhZW2eBsyyclsltnJmmTA_nsz7rR0pReSi4RznveccM5bFK8xWmJa409bP4ZB9cu9H2CJSMMIo0-KU9xQsuAE0acP3ifFixi3CFVUcP68OKECccQadlpcrQwMyVmnVXJ-KL0t98EncEMZXTeoNAaIpfWh7MehK7UaNIQyjm263edEqyKYMus-_7helztIG29eFs-s6iO8mu-z4ubrl5uL74vL9bfVxfnlQleCpwWtwLaacaE41cRWoHCjuBBmSvAKK8UqhCgxlgtdEYOZ1aJpWFVjI2pDz4q3h7L73kc5TyNKimrSEMFxlYnVgTBebeU-uJ0Kt9IrJ_8GfOikCsnpHiTURgjLcQuGMJX7tExYjYxpKQhkaa71Ye4W_K8RYpI7FzX0vRrAj1GSZloB52hC3_2DPv65mepU7u8G61NQeioqz-u64lXT4KnW8hEqHwM7p_PmrcvxI8HHI0FmEvxOnRpjlKvrq_9n1z-P2fcP2A2oPm2i78fJNPEYZAdQBx9jAHs_eIzkZNy7acjJuHI2bpa9mYc2tjsw96I7p9I_MD_m_A</recordid><startdate>20231207</startdate><enddate>20231207</enddate><creator>Wang, Jihan</creator><creator>Wang, Hanping</creator><creator>Xu, Jing</creator><creator>Song, Qiying</creator><creator>Zhou, Baozhen</creator><creator>Shangguan, Jingbo</creator><creator>Xue, Mengju</creator><creator>Wang, Yangyang</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4753-7193</orcidid></search><sort><creationdate>20231207</creationdate><title>Identification of protein signatures for lung cancer subtypes based on BPSO method</title><author>Wang, Jihan ; Wang, Hanping ; Xu, Jing ; Song, Qiying ; Zhou, Baozhen ; Shangguan, Jingbo ; Xue, Mengju ; Wang, Yangyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c586t-35efbc468a63c2f5ea19a688d35ef651aa450032df68c52d14fc8994571d87d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Biomarkers</topic><topic>Care and treatment</topic><topic>Classification</topic><topic>Cytokeratin</topic><topic>Datasets</topic><topic>Decision making</topic><topic>Diagnosis</topic><topic>Dipeptidyl-peptidase IV</topic><topic>Evaluation</topic><topic>Feature selection</topic><topic>Head &amp; neck cancer</topic><topic>Lung cancer</topic><topic>Lung diseases</topic><topic>Mathematical optimization</topic><topic>Medical prognosis</topic><topic>Medical research</topic><topic>Methods</topic><topic>Optimization techniques</topic><topic>Phenotypes</topic><topic>Protein expression</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Squamous cell carcinoma</topic><topic>Statistical models</topic><topic>Swarm intelligence</topic><topic>Tumors</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jihan</creatorcontrib><creatorcontrib>Wang, Hanping</creatorcontrib><creatorcontrib>Xu, Jing</creatorcontrib><creatorcontrib>Song, Qiying</creatorcontrib><creatorcontrib>Zhou, Baozhen</creatorcontrib><creatorcontrib>Shangguan, Jingbo</creatorcontrib><creatorcontrib>Xue, Mengju</creatorcontrib><creatorcontrib>Wang, Yangyang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jihan</au><au>Wang, Hanping</au><au>Xu, Jing</au><au>Song, Qiying</au><au>Zhou, Baozhen</au><au>Shangguan, Jingbo</au><au>Xue, Mengju</au><au>Wang, Yangyang</au><au>Wu, Bingli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of protein signatures for lung cancer subtypes based on BPSO method</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2023-12-07</date><risdate>2023</risdate><volume>18</volume><issue>12</issue><spage>e0294243</spage><epage>e0294243</epage><pages>e0294243-e0294243</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The objective of this study was to identify protein biomarkers that can distinguish between LUAD and LUSC, critical for personalized treatment plans. The proteomic profiling data of LUAD and LUSC samples from TCPA database, along with phenotype and survival information from TCGA database were downloaded and preprocessed for analysis. We used BPSO feature selection method and identified 10 candidate protein biomarkers that have better classifying performance, as analyzed by t-SNE and PCA algorithms. To explore the causalities among these proteins and their associations with tumor subtypes, we conducted the PCStable algorithm to construct a regulatory network. Results indicated that 4 proteins, MIG6, CD26, NF2, and INPP4B, were directly linked to the lung cancer subtypes and may be useful in guiding therapeutic decision-making. Besides, spearman correlation, Cox proportional hazard model and Kaplan-Meier curve was employed to validate the biological significance of the candidate proteins. In summary, our study highlights the importance of protein biomarkers in the classification of lung cancer subtypes and the potential of computational methods for identifying key biomarkers and understanding their underlying biological mechanisms.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>38060494</pmid><doi>10.1371/journal.pone.0294243</doi><tpages>e0294243</tpages><orcidid>https://orcid.org/0000-0002-4753-7193</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2023-12, Vol.18 (12), p.e0294243-e0294243
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_3072928615
source Public Library of Science (PLoS) Journals Open Access; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Analysis
Biomarkers
Care and treatment
Classification
Cytokeratin
Datasets
Decision making
Diagnosis
Dipeptidyl-peptidase IV
Evaluation
Feature selection
Head & neck cancer
Lung cancer
Lung diseases
Mathematical optimization
Medical prognosis
Medical research
Methods
Optimization techniques
Phenotypes
Protein expression
Proteins
Proteomics
Squamous cell carcinoma
Statistical models
Swarm intelligence
Tumors
Velocity
title Identification of protein signatures for lung cancer subtypes based on BPSO method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T09%3A40%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20protein%20signatures%20for%20lung%20cancer%20subtypes%20based%20on%20BPSO%20method&rft.jtitle=PloS%20one&rft.au=Wang,%20Jihan&rft.date=2023-12-07&rft.volume=18&rft.issue=12&rft.spage=e0294243&rft.epage=e0294243&rft.pages=e0294243-e0294243&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0294243&rft_dat=%3Cgale_plos_%3EA775659913%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072928615&rft_id=info:pmid/38060494&rft_galeid=A775659913&rft_doaj_id=oai_doaj_org_article_e7d88f61bed24ac89b48fc0ddb3e80f3&rfr_iscdi=true