Robust meta gradient learning for high-dimensional data with noisy-label ignorance

Large datasets with noisy labels and high dimensions have become increasingly prevalent in industry. These datasets often contain errors or inconsistencies in the assigned labels and introduce a vast number of predictive variables. Such issues frequently arise in real-world scenarios due to uncertai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2023-12, Vol.18 (12), p.e0295678-e0295678
Hauptverfasser: Liu, Ben, Lin, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Large datasets with noisy labels and high dimensions have become increasingly prevalent in industry. These datasets often contain errors or inconsistencies in the assigned labels and introduce a vast number of predictive variables. Such issues frequently arise in real-world scenarios due to uncertainties or human errors during data collection and annotation processes. The presence of noisy labels and high dimensions can significantly impair the generalization ability and accuracy of trained models. To address the above issues, we introduce a simple-structured penalized γ-divergence model and a novel meta-gradient correction algorithm and establish the foundations of these two modules based on rigorous theoretical proofs. Finally, comprehensive experiments are conducted to validate their effectiveness in detecting noisy labels and mitigating the curse of dimensionality and suggest that our proposed model and algorithm can achieve promising outcomes. Moreover, we open-source our codes and distinctive datasets on GitHub (refer to https://github.com/DebtVC2022/Robust_Learning_with_MGC).
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0295678