Unveiling potent inhibitors for schistosomiasis through ligand-based drug design, molecular docking, molecular dynamics simulations and pharmacokinetics predictions

Schistosomiasis is a neglected tropical disease which imposes a considerable and enduring impact on affected regions, leading to persistent morbidity, hindering child development, diminishing productivity, and imposing economic burdens. Due to the emergence of drug resistance and limited management...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2024-06, Vol.19 (6), p.e0302390
Hauptverfasser: Ja'afaru, Saudatu Chinade, Uzairu, Adamu, Bayil, Imren, Sallau, Muhammed Sani, Ndukwe, George Iloegbulam, Ibrahim, Muhammad Tukur, Moin, Abu Tayab, Mollah, A K M Moniruzzaman, Absar, Nurul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page e0302390
container_title PloS one
container_volume 19
creator Ja'afaru, Saudatu Chinade
Uzairu, Adamu
Bayil, Imren
Sallau, Muhammed Sani
Ndukwe, George Iloegbulam
Ibrahim, Muhammad Tukur
Moin, Abu Tayab
Mollah, A K M Moniruzzaman
Absar, Nurul
description Schistosomiasis is a neglected tropical disease which imposes a considerable and enduring impact on affected regions, leading to persistent morbidity, hindering child development, diminishing productivity, and imposing economic burdens. Due to the emergence of drug resistance and limited management options, there is need to develop additional effective inhibitors for schistosomiasis. In view of this, quantitative structure-activity relationship studies, molecular docking, molecular dynamics simulations, drug-likeness and pharmacokinetics predictions were applied to 39 Schistosoma mansoni Thioredoxin Glutathione Reductase (SmTGR) inhibitors. The chosen QSAR model demonstrated robust statistical parameters, including an R2 of 0.798, R2adj of 0.767, Q2cv of 0.681, LOF of 0.930, R2test of 0.776, and cR2p of 0.746, confirming its reliability. The most active derivative (compound 40) was identified as a lead candidate for the development of new potential non-covalent inhibitors through ligand-based design. Subsequently, 12 novel compounds (40a-40l) were designed with enhanced anti-schistosomiasis activity and binding affinity. Molecular docking studies revealed strong and stable interactions, including hydrogen bonding, between the designed compounds and the target receptor. Molecular dynamics simulations over 100 nanoseconds and MM-PBSA free binding energy (ΔGbind) calculations validated the stability of the two best-designed molecules. Furthermore, drug-likeness and pharmacokinetics prediction analyses affirmed the potential of these designed compounds, suggesting their promise as innovative agents for the treatment of schistosomiasis.
doi_str_mv 10.1371/journal.pone.0302390
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3072690065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A799076613</galeid><doaj_id>oai_doaj_org_article_a4c31dfaaece4a4a8942ef2d7044f5bd</doaj_id><sourcerecordid>A799076613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c642t-4dced726d3e0a77830aefb2e24cd51b617532805526b85b625992c59cd83064d3</originalsourceid><addsrcrecordid>eNqNk11rFTEQhhdRbK3-A9GAIAqeYzbZj7NXUoofhUJBrbdhNpndTc0mxyRb7P_xh5rz0dKVXkguNsw-7zuTSSbLnud0mfM6f3_pJm_BLNfO4pJyynhDH2SHecPZomKUP7yzP8iehHBJaclXVfU4O-CrJuFNfZj9ubBXqI22PVm7iDYSbQfd6uh8IJ3zJMhBh-iCGzUEHUgcvJv6gRjdg1WLFgIqovzUE4VB9_YdGZ1BORnwRDn5MznPQtcWRi0DCXpMgaidDSQZkfUAfgTpkgDjBlh7VFpugafZow5MwGf771F28enj95Mvi7Pzz6cnx2cLWRUsLgolUdWsUhwp1PWKU8CuZcgKqcq8rfK65GxFy5JV7apsK1Y2DZNlI1VCq0Lxo-zlzndtXBD7BgfBaTJtKK3KRJzuCOXgUqy9HsFfCwdabAPO9wJ8Kt-ggELyXHUAKLGAAlZNwbBjqqZF0ZXtJtuHfbapHTHVbqMHMzOd_7F6EL27EnnOaJ3zJjm82Tt492vCEMWog0RjwKKbdoXXTcNrltBX_6D3H29P9ZBOoG3nUmK5MRXHyYjWVZXzRC3vodJSmK42PcdOp_hM8HYmSEzE37GHKQRx-u3r_7PnP-bs6zvsgGDiEJyZto9mDhY7UHoXgsfutss5FZtpuumG2EyT2E9Tkr24e0O3opvx4X8BXIMfUg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072690065</pqid></control><display><type>article</type><title>Unveiling potent inhibitors for schistosomiasis through ligand-based drug design, molecular docking, molecular dynamics simulations and pharmacokinetics predictions</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Ja'afaru, Saudatu Chinade ; Uzairu, Adamu ; Bayil, Imren ; Sallau, Muhammed Sani ; Ndukwe, George Iloegbulam ; Ibrahim, Muhammad Tukur ; Moin, Abu Tayab ; Mollah, A K M Moniruzzaman ; Absar, Nurul</creator><creatorcontrib>Ja'afaru, Saudatu Chinade ; Uzairu, Adamu ; Bayil, Imren ; Sallau, Muhammed Sani ; Ndukwe, George Iloegbulam ; Ibrahim, Muhammad Tukur ; Moin, Abu Tayab ; Mollah, A K M Moniruzzaman ; Absar, Nurul</creatorcontrib><description>Schistosomiasis is a neglected tropical disease which imposes a considerable and enduring impact on affected regions, leading to persistent morbidity, hindering child development, diminishing productivity, and imposing economic burdens. Due to the emergence of drug resistance and limited management options, there is need to develop additional effective inhibitors for schistosomiasis. In view of this, quantitative structure-activity relationship studies, molecular docking, molecular dynamics simulations, drug-likeness and pharmacokinetics predictions were applied to 39 Schistosoma mansoni Thioredoxin Glutathione Reductase (SmTGR) inhibitors. The chosen QSAR model demonstrated robust statistical parameters, including an R2 of 0.798, R2adj of 0.767, Q2cv of 0.681, LOF of 0.930, R2test of 0.776, and cR2p of 0.746, confirming its reliability. The most active derivative (compound 40) was identified as a lead candidate for the development of new potential non-covalent inhibitors through ligand-based design. Subsequently, 12 novel compounds (40a-40l) were designed with enhanced anti-schistosomiasis activity and binding affinity. Molecular docking studies revealed strong and stable interactions, including hydrogen bonding, between the designed compounds and the target receptor. Molecular dynamics simulations over 100 nanoseconds and MM-PBSA free binding energy (ΔGbind) calculations validated the stability of the two best-designed molecules. Furthermore, drug-likeness and pharmacokinetics prediction analyses affirmed the potential of these designed compounds, suggesting their promise as innovative agents for the treatment of schistosomiasis.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0302390</identifier><identifier>PMID: 38923997</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Biology and Life Sciences ; Boceprevir ; Bonding strength ; Candidates ; Chemical bonds ; Datasets ; Design ; Drug Design ; Drug development ; Drug resistance ; Force and energy ; Glutathione ; Glutathione reductase ; Humans ; Hydrogen ; Hydrogen bonding ; Inhibitors ; Laboratories ; Ligands ; Medical innovations ; Medicine and Health Sciences ; Molecular docking ; Molecular Docking Simulation ; Molecular dynamics ; Molecular Dynamics Simulation ; Molecular structure ; Morbidity ; Multienzyme Complexes ; NADH, NADPH Oxidoreductases - antagonists &amp; inhibitors ; NADH, NADPH Oxidoreductases - chemistry ; NADH, NADPH Oxidoreductases - metabolism ; Optimization ; Parameter robustness ; Parasites ; Pharmacokinetics ; Physical Sciences ; Predictions ; Quantitative Structure-Activity Relationship ; R&amp;D ; Raltegravir ; Reductases ; Research &amp; development ; Research and Analysis Methods ; Schistosoma mansoni - drug effects ; Schistosomiasis ; Schistosomiasis - drug therapy ; Simulation ; Simulation methods ; Software ; Statistical models ; Structure-activity relationships ; Thioredoxin</subject><ispartof>PloS one, 2024-06, Vol.19 (6), p.e0302390</ispartof><rights>Copyright: © 2024 Ja’afaru et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Ja’afaru et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Ja’afaru et al 2024 Ja’afaru et al</rights><rights>2024 Ja’afaru et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c642t-4dced726d3e0a77830aefb2e24cd51b617532805526b85b625992c59cd83064d3</cites><orcidid>0000-0001-8613-6539 ; 0000-0002-2954-3215 ; 0009-0006-9261-4641</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11207139/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11207139/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38923997$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ja'afaru, Saudatu Chinade</creatorcontrib><creatorcontrib>Uzairu, Adamu</creatorcontrib><creatorcontrib>Bayil, Imren</creatorcontrib><creatorcontrib>Sallau, Muhammed Sani</creatorcontrib><creatorcontrib>Ndukwe, George Iloegbulam</creatorcontrib><creatorcontrib>Ibrahim, Muhammad Tukur</creatorcontrib><creatorcontrib>Moin, Abu Tayab</creatorcontrib><creatorcontrib>Mollah, A K M Moniruzzaman</creatorcontrib><creatorcontrib>Absar, Nurul</creatorcontrib><title>Unveiling potent inhibitors for schistosomiasis through ligand-based drug design, molecular docking, molecular dynamics simulations and pharmacokinetics predictions</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Schistosomiasis is a neglected tropical disease which imposes a considerable and enduring impact on affected regions, leading to persistent morbidity, hindering child development, diminishing productivity, and imposing economic burdens. Due to the emergence of drug resistance and limited management options, there is need to develop additional effective inhibitors for schistosomiasis. In view of this, quantitative structure-activity relationship studies, molecular docking, molecular dynamics simulations, drug-likeness and pharmacokinetics predictions were applied to 39 Schistosoma mansoni Thioredoxin Glutathione Reductase (SmTGR) inhibitors. The chosen QSAR model demonstrated robust statistical parameters, including an R2 of 0.798, R2adj of 0.767, Q2cv of 0.681, LOF of 0.930, R2test of 0.776, and cR2p of 0.746, confirming its reliability. The most active derivative (compound 40) was identified as a lead candidate for the development of new potential non-covalent inhibitors through ligand-based design. Subsequently, 12 novel compounds (40a-40l) were designed with enhanced anti-schistosomiasis activity and binding affinity. Molecular docking studies revealed strong and stable interactions, including hydrogen bonding, between the designed compounds and the target receptor. Molecular dynamics simulations over 100 nanoseconds and MM-PBSA free binding energy (ΔGbind) calculations validated the stability of the two best-designed molecules. Furthermore, drug-likeness and pharmacokinetics prediction analyses affirmed the potential of these designed compounds, suggesting their promise as innovative agents for the treatment of schistosomiasis.</description><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Boceprevir</subject><subject>Bonding strength</subject><subject>Candidates</subject><subject>Chemical bonds</subject><subject>Datasets</subject><subject>Design</subject><subject>Drug Design</subject><subject>Drug development</subject><subject>Drug resistance</subject><subject>Force and energy</subject><subject>Glutathione</subject><subject>Glutathione reductase</subject><subject>Humans</subject><subject>Hydrogen</subject><subject>Hydrogen bonding</subject><subject>Inhibitors</subject><subject>Laboratories</subject><subject>Ligands</subject><subject>Medical innovations</subject><subject>Medicine and Health Sciences</subject><subject>Molecular docking</subject><subject>Molecular Docking Simulation</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular structure</subject><subject>Morbidity</subject><subject>Multienzyme Complexes</subject><subject>NADH, NADPH Oxidoreductases - antagonists &amp; inhibitors</subject><subject>NADH, NADPH Oxidoreductases - chemistry</subject><subject>NADH, NADPH Oxidoreductases - metabolism</subject><subject>Optimization</subject><subject>Parameter robustness</subject><subject>Parasites</subject><subject>Pharmacokinetics</subject><subject>Physical Sciences</subject><subject>Predictions</subject><subject>Quantitative Structure-Activity Relationship</subject><subject>R&amp;D</subject><subject>Raltegravir</subject><subject>Reductases</subject><subject>Research &amp; development</subject><subject>Research and Analysis Methods</subject><subject>Schistosoma mansoni - drug effects</subject><subject>Schistosomiasis</subject><subject>Schistosomiasis - drug therapy</subject><subject>Simulation</subject><subject>Simulation methods</subject><subject>Software</subject><subject>Statistical models</subject><subject>Structure-activity relationships</subject><subject>Thioredoxin</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11rFTEQhhdRbK3-A9GAIAqeYzbZj7NXUoofhUJBrbdhNpndTc0mxyRb7P_xh5rz0dKVXkguNsw-7zuTSSbLnud0mfM6f3_pJm_BLNfO4pJyynhDH2SHecPZomKUP7yzP8iehHBJaclXVfU4O-CrJuFNfZj9ubBXqI22PVm7iDYSbQfd6uh8IJ3zJMhBh-iCGzUEHUgcvJv6gRjdg1WLFgIqovzUE4VB9_YdGZ1BORnwRDn5MznPQtcWRi0DCXpMgaidDSQZkfUAfgTpkgDjBlh7VFpugafZow5MwGf771F28enj95Mvi7Pzz6cnx2cLWRUsLgolUdWsUhwp1PWKU8CuZcgKqcq8rfK65GxFy5JV7apsK1Y2DZNlI1VCq0Lxo-zlzndtXBD7BgfBaTJtKK3KRJzuCOXgUqy9HsFfCwdabAPO9wJ8Kt-ggELyXHUAKLGAAlZNwbBjqqZF0ZXtJtuHfbapHTHVbqMHMzOd_7F6EL27EnnOaJ3zJjm82Tt492vCEMWog0RjwKKbdoXXTcNrltBX_6D3H29P9ZBOoG3nUmK5MRXHyYjWVZXzRC3vodJSmK42PcdOp_hM8HYmSEzE37GHKQRx-u3r_7PnP-bs6zvsgGDiEJyZto9mDhY7UHoXgsfutss5FZtpuumG2EyT2E9Tkr24e0O3opvx4X8BXIMfUg</recordid><startdate>20240626</startdate><enddate>20240626</enddate><creator>Ja'afaru, Saudatu Chinade</creator><creator>Uzairu, Adamu</creator><creator>Bayil, Imren</creator><creator>Sallau, Muhammed Sani</creator><creator>Ndukwe, George Iloegbulam</creator><creator>Ibrahim, Muhammad Tukur</creator><creator>Moin, Abu Tayab</creator><creator>Mollah, A K M Moniruzzaman</creator><creator>Absar, Nurul</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8613-6539</orcidid><orcidid>https://orcid.org/0000-0002-2954-3215</orcidid><orcidid>https://orcid.org/0009-0006-9261-4641</orcidid></search><sort><creationdate>20240626</creationdate><title>Unveiling potent inhibitors for schistosomiasis through ligand-based drug design, molecular docking, molecular dynamics simulations and pharmacokinetics predictions</title><author>Ja'afaru, Saudatu Chinade ; Uzairu, Adamu ; Bayil, Imren ; Sallau, Muhammed Sani ; Ndukwe, George Iloegbulam ; Ibrahim, Muhammad Tukur ; Moin, Abu Tayab ; Mollah, A K M Moniruzzaman ; Absar, Nurul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c642t-4dced726d3e0a77830aefb2e24cd51b617532805526b85b625992c59cd83064d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Boceprevir</topic><topic>Bonding strength</topic><topic>Candidates</topic><topic>Chemical bonds</topic><topic>Datasets</topic><topic>Design</topic><topic>Drug Design</topic><topic>Drug development</topic><topic>Drug resistance</topic><topic>Force and energy</topic><topic>Glutathione</topic><topic>Glutathione reductase</topic><topic>Humans</topic><topic>Hydrogen</topic><topic>Hydrogen bonding</topic><topic>Inhibitors</topic><topic>Laboratories</topic><topic>Ligands</topic><topic>Medical innovations</topic><topic>Medicine and Health Sciences</topic><topic>Molecular docking</topic><topic>Molecular Docking Simulation</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular structure</topic><topic>Morbidity</topic><topic>Multienzyme Complexes</topic><topic>NADH, NADPH Oxidoreductases - antagonists &amp; inhibitors</topic><topic>NADH, NADPH Oxidoreductases - chemistry</topic><topic>NADH, NADPH Oxidoreductases - metabolism</topic><topic>Optimization</topic><topic>Parameter robustness</topic><topic>Parasites</topic><topic>Pharmacokinetics</topic><topic>Physical Sciences</topic><topic>Predictions</topic><topic>Quantitative Structure-Activity Relationship</topic><topic>R&amp;D</topic><topic>Raltegravir</topic><topic>Reductases</topic><topic>Research &amp; development</topic><topic>Research and Analysis Methods</topic><topic>Schistosoma mansoni - drug effects</topic><topic>Schistosomiasis</topic><topic>Schistosomiasis - drug therapy</topic><topic>Simulation</topic><topic>Simulation methods</topic><topic>Software</topic><topic>Statistical models</topic><topic>Structure-activity relationships</topic><topic>Thioredoxin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ja'afaru, Saudatu Chinade</creatorcontrib><creatorcontrib>Uzairu, Adamu</creatorcontrib><creatorcontrib>Bayil, Imren</creatorcontrib><creatorcontrib>Sallau, Muhammed Sani</creatorcontrib><creatorcontrib>Ndukwe, George Iloegbulam</creatorcontrib><creatorcontrib>Ibrahim, Muhammad Tukur</creatorcontrib><creatorcontrib>Moin, Abu Tayab</creatorcontrib><creatorcontrib>Mollah, A K M Moniruzzaman</creatorcontrib><creatorcontrib>Absar, Nurul</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ja'afaru, Saudatu Chinade</au><au>Uzairu, Adamu</au><au>Bayil, Imren</au><au>Sallau, Muhammed Sani</au><au>Ndukwe, George Iloegbulam</au><au>Ibrahim, Muhammad Tukur</au><au>Moin, Abu Tayab</au><au>Mollah, A K M Moniruzzaman</au><au>Absar, Nurul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unveiling potent inhibitors for schistosomiasis through ligand-based drug design, molecular docking, molecular dynamics simulations and pharmacokinetics predictions</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-06-26</date><risdate>2024</risdate><volume>19</volume><issue>6</issue><spage>e0302390</spage><pages>e0302390-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Schistosomiasis is a neglected tropical disease which imposes a considerable and enduring impact on affected regions, leading to persistent morbidity, hindering child development, diminishing productivity, and imposing economic burdens. Due to the emergence of drug resistance and limited management options, there is need to develop additional effective inhibitors for schistosomiasis. In view of this, quantitative structure-activity relationship studies, molecular docking, molecular dynamics simulations, drug-likeness and pharmacokinetics predictions were applied to 39 Schistosoma mansoni Thioredoxin Glutathione Reductase (SmTGR) inhibitors. The chosen QSAR model demonstrated robust statistical parameters, including an R2 of 0.798, R2adj of 0.767, Q2cv of 0.681, LOF of 0.930, R2test of 0.776, and cR2p of 0.746, confirming its reliability. The most active derivative (compound 40) was identified as a lead candidate for the development of new potential non-covalent inhibitors through ligand-based design. Subsequently, 12 novel compounds (40a-40l) were designed with enhanced anti-schistosomiasis activity and binding affinity. Molecular docking studies revealed strong and stable interactions, including hydrogen bonding, between the designed compounds and the target receptor. Molecular dynamics simulations over 100 nanoseconds and MM-PBSA free binding energy (ΔGbind) calculations validated the stability of the two best-designed molecules. Furthermore, drug-likeness and pharmacokinetics prediction analyses affirmed the potential of these designed compounds, suggesting their promise as innovative agents for the treatment of schistosomiasis.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>38923997</pmid><doi>10.1371/journal.pone.0302390</doi><tpages>e0302390</tpages><orcidid>https://orcid.org/0000-0001-8613-6539</orcidid><orcidid>https://orcid.org/0000-0002-2954-3215</orcidid><orcidid>https://orcid.org/0009-0006-9261-4641</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2024-06, Vol.19 (6), p.e0302390
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_3072690065
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Animals
Biology and Life Sciences
Boceprevir
Bonding strength
Candidates
Chemical bonds
Datasets
Design
Drug Design
Drug development
Drug resistance
Force and energy
Glutathione
Glutathione reductase
Humans
Hydrogen
Hydrogen bonding
Inhibitors
Laboratories
Ligands
Medical innovations
Medicine and Health Sciences
Molecular docking
Molecular Docking Simulation
Molecular dynamics
Molecular Dynamics Simulation
Molecular structure
Morbidity
Multienzyme Complexes
NADH, NADPH Oxidoreductases - antagonists & inhibitors
NADH, NADPH Oxidoreductases - chemistry
NADH, NADPH Oxidoreductases - metabolism
Optimization
Parameter robustness
Parasites
Pharmacokinetics
Physical Sciences
Predictions
Quantitative Structure-Activity Relationship
R&D
Raltegravir
Reductases
Research & development
Research and Analysis Methods
Schistosoma mansoni - drug effects
Schistosomiasis
Schistosomiasis - drug therapy
Simulation
Simulation methods
Software
Statistical models
Structure-activity relationships
Thioredoxin
title Unveiling potent inhibitors for schistosomiasis through ligand-based drug design, molecular docking, molecular dynamics simulations and pharmacokinetics predictions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A03%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unveiling%20potent%20inhibitors%20for%20schistosomiasis%20through%20ligand-based%20drug%20design,%20molecular%20docking,%20molecular%20dynamics%20simulations%20and%20pharmacokinetics%20predictions&rft.jtitle=PloS%20one&rft.au=Ja'afaru,%20Saudatu%20Chinade&rft.date=2024-06-26&rft.volume=19&rft.issue=6&rft.spage=e0302390&rft.pages=e0302390-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0302390&rft_dat=%3Cgale_plos_%3EA799076613%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072690065&rft_id=info:pmid/38923997&rft_galeid=A799076613&rft_doaj_id=oai_doaj_org_article_a4c31dfaaece4a4a8942ef2d7044f5bd&rfr_iscdi=true