On new common fixed point theorems via bipolar fuzzy b-metric space with their applications
This research work is devoted to investigating new common fixed point theorems on bipolar fuzzy b-metric space. Our main findings generalize some of the existence outcomes in the literature. Furthermore, we illustrate our findings by providing some applications for fractional differential and integr...
Gespeichert in:
Veröffentlicht in: | PloS one 2024-06, Vol.19 (6), p.e0305316 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | e0305316 |
container_title | PloS one |
container_volume | 19 |
creator | Maheswari, J. Uma Dillibabu, K Mani, Gunaseelan Thabet, Sabri T. M Kedim, Imed Vivas-Cortez, Miguel |
description | This research work is devoted to investigating new common fixed point theorems on bipolar fuzzy b-metric space. Our main findings generalize some of the existence outcomes in the literature. Furthermore, we illustrate our findings by providing some applications for fractional differential and integral equations. |
doi_str_mv | 10.1371/journal.pone.0305316 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3072226106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A798901501</galeid><sourcerecordid>A798901501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-b95ba5dad9b7ac1d63b67eab85df0e44990d2d8edc888e167aabe607332b564c3</originalsourceid><addsrcrecordid>eNqN0stq3DAUBmATUsileYNABYVCF55Ili3byxDSJjAwkLTZZCGOpOOMgm05ktxcnj6ezhQyEErQQkJ8R4tff5IcMzpjvGQn9270PbSzwfU4o5wWnImdZJ_VPEtFRvnum_NechDCPZ1MJcR-crvoSY-PRLuucz1p7BMaMjjbRxKX6Dx2gfyxQJQdXAueNOPLyzNRaYfRW03CABrJo43LFbeewDC0VkO0rg-fk08NtAGPNvth8vvH-a-zi3S--Hl5djpPNa_zmKq6UFAYMLUqQTMjuBIlgqoK01DM87qmJjMVGl1VFTJRAigUtOQ8U4XINT9MvqzfHVoX5CaMIDktsywTjIpJfN0I7x5GDPH_6g5alLZvXPSgOxu0PC3rqqasoGxSs3fUtAx2Vk8_0Njpfmvg-9bAZCI-xTsYQ5CX11cft4ubbfvtjV0itHEZXDv-zX4b5muovQvBYyMHbzvwz5JRuSrQvzTkqkByUyD-ColRuMA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072226106</pqid></control><display><type>article</type><title>On new common fixed point theorems via bipolar fuzzy b-metric space with their applications</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Maheswari, J. Uma ; Dillibabu, K ; Mani, Gunaseelan ; Thabet, Sabri T. M ; Kedim, Imed ; Vivas-Cortez, Miguel</creator><contributor>Jan, Naeem</contributor><creatorcontrib>Maheswari, J. Uma ; Dillibabu, K ; Mani, Gunaseelan ; Thabet, Sabri T. M ; Kedim, Imed ; Vivas-Cortez, Miguel ; Jan, Naeem</creatorcontrib><description>This research work is devoted to investigating new common fixed point theorems on bipolar fuzzy b-metric space. Our main findings generalize some of the existence outcomes in the literature. Furthermore, we illustrate our findings by providing some applications for fractional differential and integral equations.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0305316</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Analysis ; Differential equations ; Fixed point theory ; Fixed points (mathematics) ; Fuzzy algorithms ; Fuzzy logic ; Fuzzy sets ; Fuzzy systems ; Integral equations ; Metric space ; Theorems</subject><ispartof>PloS one, 2024-06, Vol.19 (6), p.e0305316</ispartof><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Maheswari et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Maheswari et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c394t-b95ba5dad9b7ac1d63b67eab85df0e44990d2d8edc888e167aabe607332b564c3</cites><orcidid>0000-0002-1567-0264</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2928,23866,27924,27925</link.rule.ids></links><search><contributor>Jan, Naeem</contributor><creatorcontrib>Maheswari, J. Uma</creatorcontrib><creatorcontrib>Dillibabu, K</creatorcontrib><creatorcontrib>Mani, Gunaseelan</creatorcontrib><creatorcontrib>Thabet, Sabri T. M</creatorcontrib><creatorcontrib>Kedim, Imed</creatorcontrib><creatorcontrib>Vivas-Cortez, Miguel</creatorcontrib><title>On new common fixed point theorems via bipolar fuzzy b-metric space with their applications</title><title>PloS one</title><description>This research work is devoted to investigating new common fixed point theorems on bipolar fuzzy b-metric space. Our main findings generalize some of the existence outcomes in the literature. Furthermore, we illustrate our findings by providing some applications for fractional differential and integral equations.</description><subject>Analysis</subject><subject>Differential equations</subject><subject>Fixed point theory</subject><subject>Fixed points (mathematics)</subject><subject>Fuzzy algorithms</subject><subject>Fuzzy logic</subject><subject>Fuzzy sets</subject><subject>Fuzzy systems</subject><subject>Integral equations</subject><subject>Metric space</subject><subject>Theorems</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqN0stq3DAUBmATUsileYNABYVCF55Ili3byxDSJjAwkLTZZCGOpOOMgm05ktxcnj6ezhQyEErQQkJ8R4tff5IcMzpjvGQn9270PbSzwfU4o5wWnImdZJ_VPEtFRvnum_NechDCPZ1MJcR-crvoSY-PRLuucz1p7BMaMjjbRxKX6Dx2gfyxQJQdXAueNOPLyzNRaYfRW03CABrJo43LFbeewDC0VkO0rg-fk08NtAGPNvth8vvH-a-zi3S--Hl5djpPNa_zmKq6UFAYMLUqQTMjuBIlgqoK01DM87qmJjMVGl1VFTJRAigUtOQ8U4XINT9MvqzfHVoX5CaMIDktsywTjIpJfN0I7x5GDPH_6g5alLZvXPSgOxu0PC3rqqasoGxSs3fUtAx2Vk8_0Njpfmvg-9bAZCI-xTsYQ5CX11cft4ubbfvtjV0itHEZXDv-zX4b5muovQvBYyMHbzvwz5JRuSrQvzTkqkByUyD-ColRuMA</recordid><startdate>20240625</startdate><enddate>20240625</enddate><creator>Maheswari, J. Uma</creator><creator>Dillibabu, K</creator><creator>Mani, Gunaseelan</creator><creator>Thabet, Sabri T. M</creator><creator>Kedim, Imed</creator><creator>Vivas-Cortez, Miguel</creator><general>Public Library of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-1567-0264</orcidid></search><sort><creationdate>20240625</creationdate><title>On new common fixed point theorems via bipolar fuzzy b-metric space with their applications</title><author>Maheswari, J. Uma ; Dillibabu, K ; Mani, Gunaseelan ; Thabet, Sabri T. M ; Kedim, Imed ; Vivas-Cortez, Miguel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-b95ba5dad9b7ac1d63b67eab85df0e44990d2d8edc888e167aabe607332b564c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analysis</topic><topic>Differential equations</topic><topic>Fixed point theory</topic><topic>Fixed points (mathematics)</topic><topic>Fuzzy algorithms</topic><topic>Fuzzy logic</topic><topic>Fuzzy sets</topic><topic>Fuzzy systems</topic><topic>Integral equations</topic><topic>Metric space</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maheswari, J. Uma</creatorcontrib><creatorcontrib>Dillibabu, K</creatorcontrib><creatorcontrib>Mani, Gunaseelan</creatorcontrib><creatorcontrib>Thabet, Sabri T. M</creatorcontrib><creatorcontrib>Kedim, Imed</creatorcontrib><creatorcontrib>Vivas-Cortez, Miguel</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maheswari, J. Uma</au><au>Dillibabu, K</au><au>Mani, Gunaseelan</au><au>Thabet, Sabri T. M</au><au>Kedim, Imed</au><au>Vivas-Cortez, Miguel</au><au>Jan, Naeem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On new common fixed point theorems via bipolar fuzzy b-metric space with their applications</atitle><jtitle>PloS one</jtitle><date>2024-06-25</date><risdate>2024</risdate><volume>19</volume><issue>6</issue><spage>e0305316</spage><pages>e0305316-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>This research work is devoted to investigating new common fixed point theorems on bipolar fuzzy b-metric space. Our main findings generalize some of the existence outcomes in the literature. Furthermore, we illustrate our findings by providing some applications for fractional differential and integral equations.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><doi>10.1371/journal.pone.0305316</doi><tpages>e0305316</tpages><orcidid>https://orcid.org/0000-0002-1567-0264</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2024-06, Vol.19 (6), p.e0305316 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_3072226106 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Analysis Differential equations Fixed point theory Fixed points (mathematics) Fuzzy algorithms Fuzzy logic Fuzzy sets Fuzzy systems Integral equations Metric space Theorems |
title | On new common fixed point theorems via bipolar fuzzy b-metric space with their applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T23%3A26%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20new%20common%20fixed%20point%20theorems%20via%20bipolar%20fuzzy%20b-metric%20space%20with%20their%20applications&rft.jtitle=PloS%20one&rft.au=Maheswari,%20J.%20Uma&rft.date=2024-06-25&rft.volume=19&rft.issue=6&rft.spage=e0305316&rft.pages=e0305316-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0305316&rft_dat=%3Cgale_plos_%3EA798901501%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072226106&rft_id=info:pmid/&rft_galeid=A798901501&rfr_iscdi=true |