BERT4FCA: A method for bipartite link prediction using formal concept analysis and BERT

Link prediction in bipartite networks finds practical applications in various domains, including friend recommendation in social networks and chemical reaction prediction in metabolic networks. Recent studies have highlighted the potential for link prediction by maximal bi-cliques, which is a struct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2024-06, Vol.19 (6), p.e0304858-e0304858
Hauptverfasser: Peng, Siqi, Yang, Hongyuan, Yamamoto, Akihiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0304858
container_issue 6
container_start_page e0304858
container_title PloS one
container_volume 19
creator Peng, Siqi
Yang, Hongyuan
Yamamoto, Akihiro
description Link prediction in bipartite networks finds practical applications in various domains, including friend recommendation in social networks and chemical reaction prediction in metabolic networks. Recent studies have highlighted the potential for link prediction by maximal bi-cliques, which is a structural feature within bipartite networks that can be extracted using formal concept analysis (FCA). Although previous FCA-based methods for bipartite link prediction have achieved good performance, they still have the problem that they cannot fully capture the information of maximal bi-cliques. To solve this problem, we propose a novel method for link prediction in bipartite networks, utilizing a BERT-like transformer encoder network to enhance the contribution of FCA to link prediction. Our method facilitates bipartite link prediction by learning more information from the maximal bi-cliques and their order relations extracted by FCA. Experimental results on five real-world bipartite networks demonstrate that our method outperforms previous FCA-based methods, a state-of-the-art Graph Neural Network(GNN)-based method, and classic methods such as matrix-factorization and node2vec.
doi_str_mv 10.1371/journal.pone.0304858
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3069270031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A796475914</galeid><doaj_id>oai_doaj_org_article_29b10a87dc414974b1243d34c2194e72</doaj_id><sourcerecordid>A796475914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c642t-57e6b79a989a8208e64ce753ba25cd8a3739ad0b46eddf3d59e6e3498e331daa3</originalsourceid><addsrcrecordid>eNqNk11v0zAUhiMEYmPwDxBEQkJw0eKvxPZuUKk2qDRp0hhwaTn2SeuSxCFOEPv3OGs2tWgXyBe27Oe8x-crSV5iNMeU4w9bP3SNruatb2COKGIiE4-SYywpmeUE0cd756PkWQhbhDIq8vxpckSFoFxKdJz8-HR2dc3Ol4vTdJHW0G-8TUvfpYVrdde7HtLKNT_TtgPrTO98kw7BNeuRqXWVGt8YaPtUx5_cBBfiwaaj5PPkSamrAC-m_ST5dn52vfwyu7j8vFouLmYmZ6SfZRzygksthdSCIAE5M8AzWmiSGSs05VRqiwqWg7UltZmEHCiTAijFVmt6krze6baVD2rKSVAU5ZJwhCiOxGpHWK-3qu1crbsb5bVTtxe-W6sxUlOBIrLASAtuDcNMclZgwqilzBAsGXAStT5O3oaiBmug6TtdHYgevjRuo9b-t8IYZ4RwHhXeTQqd_zVA6FXtgoGq0g344fbjGeEZJyKib_5BHw5votY6RuCa0kfHZhRVCy5zxjOJWaTmD1BxWahdLCKULt4fGLw_MIhMD3_6tR5CUKuvV__PXn4_ZN_usRvQVb8JvhrG1gqHINuBpvMhdFDeZxkjNQ7AXTbUOABqGoBo9mq_QvdGdx1P_wJdV_4I</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069270031</pqid></control><display><type>article</type><title>BERT4FCA: A method for bipartite link prediction using formal concept analysis and BERT</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Peng, Siqi ; Yang, Hongyuan ; Yamamoto, Akihiro</creator><creatorcontrib>Peng, Siqi ; Yang, Hongyuan ; Yamamoto, Akihiro</creatorcontrib><description>Link prediction in bipartite networks finds practical applications in various domains, including friend recommendation in social networks and chemical reaction prediction in metabolic networks. Recent studies have highlighted the potential for link prediction by maximal bi-cliques, which is a structural feature within bipartite networks that can be extracted using formal concept analysis (FCA). Although previous FCA-based methods for bipartite link prediction have achieved good performance, they still have the problem that they cannot fully capture the information of maximal bi-cliques. To solve this problem, we propose a novel method for link prediction in bipartite networks, utilizing a BERT-like transformer encoder network to enhance the contribution of FCA to link prediction. Our method facilitates bipartite link prediction by learning more information from the maximal bi-cliques and their order relations extracted by FCA. Experimental results on five real-world bipartite networks demonstrate that our method outperforms previous FCA-based methods, a state-of-the-art Graph Neural Network(GNN)-based method, and classic methods such as matrix-factorization and node2vec.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0304858</identifier><identifier>PMID: 38837990</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Biology and Life Sciences ; Chemical reactions ; Co authorship ; Computational linguistics ; Computer and Information Sciences ; Graph neural networks ; Humans ; Language processing ; Metabolic networks ; Methods ; Natural language interfaces ; Natural language processing ; Network analysis ; Neural networks ; Neural Networks, Computer ; Physical Sciences ; Predictions ; Research and Analysis Methods ; Social networks ; Social organization ; Social Sciences</subject><ispartof>PloS one, 2024-06, Vol.19 (6), p.e0304858-e0304858</ispartof><rights>Copyright: © 2024 Peng et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Peng et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Peng et al 2024 Peng et al</rights><rights>2024 Peng et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c642t-57e6b79a989a8208e64ce753ba25cd8a3739ad0b46eddf3d59e6e3498e331daa3</cites><orcidid>0009-0002-0497-6708</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11152277/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11152277/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38837990$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peng, Siqi</creatorcontrib><creatorcontrib>Yang, Hongyuan</creatorcontrib><creatorcontrib>Yamamoto, Akihiro</creatorcontrib><title>BERT4FCA: A method for bipartite link prediction using formal concept analysis and BERT</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Link prediction in bipartite networks finds practical applications in various domains, including friend recommendation in social networks and chemical reaction prediction in metabolic networks. Recent studies have highlighted the potential for link prediction by maximal bi-cliques, which is a structural feature within bipartite networks that can be extracted using formal concept analysis (FCA). Although previous FCA-based methods for bipartite link prediction have achieved good performance, they still have the problem that they cannot fully capture the information of maximal bi-cliques. To solve this problem, we propose a novel method for link prediction in bipartite networks, utilizing a BERT-like transformer encoder network to enhance the contribution of FCA to link prediction. Our method facilitates bipartite link prediction by learning more information from the maximal bi-cliques and their order relations extracted by FCA. Experimental results on five real-world bipartite networks demonstrate that our method outperforms previous FCA-based methods, a state-of-the-art Graph Neural Network(GNN)-based method, and classic methods such as matrix-factorization and node2vec.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Biology and Life Sciences</subject><subject>Chemical reactions</subject><subject>Co authorship</subject><subject>Computational linguistics</subject><subject>Computer and Information Sciences</subject><subject>Graph neural networks</subject><subject>Humans</subject><subject>Language processing</subject><subject>Metabolic networks</subject><subject>Methods</subject><subject>Natural language interfaces</subject><subject>Natural language processing</subject><subject>Network analysis</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Physical Sciences</subject><subject>Predictions</subject><subject>Research and Analysis Methods</subject><subject>Social networks</subject><subject>Social organization</subject><subject>Social Sciences</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11v0zAUhiMEYmPwDxBEQkJw0eKvxPZuUKk2qDRp0hhwaTn2SeuSxCFOEPv3OGs2tWgXyBe27Oe8x-crSV5iNMeU4w9bP3SNruatb2COKGIiE4-SYywpmeUE0cd756PkWQhbhDIq8vxpckSFoFxKdJz8-HR2dc3Ol4vTdJHW0G-8TUvfpYVrdde7HtLKNT_TtgPrTO98kw7BNeuRqXWVGt8YaPtUx5_cBBfiwaaj5PPkSamrAC-m_ST5dn52vfwyu7j8vFouLmYmZ6SfZRzygksthdSCIAE5M8AzWmiSGSs05VRqiwqWg7UltZmEHCiTAijFVmt6krze6baVD2rKSVAU5ZJwhCiOxGpHWK-3qu1crbsb5bVTtxe-W6sxUlOBIrLASAtuDcNMclZgwqilzBAsGXAStT5O3oaiBmug6TtdHYgevjRuo9b-t8IYZ4RwHhXeTQqd_zVA6FXtgoGq0g344fbjGeEZJyKib_5BHw5votY6RuCa0kfHZhRVCy5zxjOJWaTmD1BxWahdLCKULt4fGLw_MIhMD3_6tR5CUKuvV__PXn4_ZN_usRvQVb8JvhrG1gqHINuBpvMhdFDeZxkjNQ7AXTbUOABqGoBo9mq_QvdGdx1P_wJdV_4I</recordid><startdate>20240605</startdate><enddate>20240605</enddate><creator>Peng, Siqi</creator><creator>Yang, Hongyuan</creator><creator>Yamamoto, Akihiro</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0002-0497-6708</orcidid></search><sort><creationdate>20240605</creationdate><title>BERT4FCA: A method for bipartite link prediction using formal concept analysis and BERT</title><author>Peng, Siqi ; Yang, Hongyuan ; Yamamoto, Akihiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c642t-57e6b79a989a8208e64ce753ba25cd8a3739ad0b46eddf3d59e6e3498e331daa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Biology and Life Sciences</topic><topic>Chemical reactions</topic><topic>Co authorship</topic><topic>Computational linguistics</topic><topic>Computer and Information Sciences</topic><topic>Graph neural networks</topic><topic>Humans</topic><topic>Language processing</topic><topic>Metabolic networks</topic><topic>Methods</topic><topic>Natural language interfaces</topic><topic>Natural language processing</topic><topic>Network analysis</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Physical Sciences</topic><topic>Predictions</topic><topic>Research and Analysis Methods</topic><topic>Social networks</topic><topic>Social organization</topic><topic>Social Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Siqi</creatorcontrib><creatorcontrib>Yang, Hongyuan</creatorcontrib><creatorcontrib>Yamamoto, Akihiro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Siqi</au><au>Yang, Hongyuan</au><au>Yamamoto, Akihiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BERT4FCA: A method for bipartite link prediction using formal concept analysis and BERT</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-06-05</date><risdate>2024</risdate><volume>19</volume><issue>6</issue><spage>e0304858</spage><epage>e0304858</epage><pages>e0304858-e0304858</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Link prediction in bipartite networks finds practical applications in various domains, including friend recommendation in social networks and chemical reaction prediction in metabolic networks. Recent studies have highlighted the potential for link prediction by maximal bi-cliques, which is a structural feature within bipartite networks that can be extracted using formal concept analysis (FCA). Although previous FCA-based methods for bipartite link prediction have achieved good performance, they still have the problem that they cannot fully capture the information of maximal bi-cliques. To solve this problem, we propose a novel method for link prediction in bipartite networks, utilizing a BERT-like transformer encoder network to enhance the contribution of FCA to link prediction. Our method facilitates bipartite link prediction by learning more information from the maximal bi-cliques and their order relations extracted by FCA. Experimental results on five real-world bipartite networks demonstrate that our method outperforms previous FCA-based methods, a state-of-the-art Graph Neural Network(GNN)-based method, and classic methods such as matrix-factorization and node2vec.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>38837990</pmid><doi>10.1371/journal.pone.0304858</doi><tpages>e0304858</tpages><orcidid>https://orcid.org/0009-0002-0497-6708</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2024-06, Vol.19 (6), p.e0304858-e0304858
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_3069270031
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Analysis
Biology and Life Sciences
Chemical reactions
Co authorship
Computational linguistics
Computer and Information Sciences
Graph neural networks
Humans
Language processing
Metabolic networks
Methods
Natural language interfaces
Natural language processing
Network analysis
Neural networks
Neural Networks, Computer
Physical Sciences
Predictions
Research and Analysis Methods
Social networks
Social organization
Social Sciences
title BERT4FCA: A method for bipartite link prediction using formal concept analysis and BERT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A35%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BERT4FCA:%20A%20method%20for%20bipartite%20link%20prediction%20using%20formal%20concept%20analysis%20and%20BERT&rft.jtitle=PloS%20one&rft.au=Peng,%20Siqi&rft.date=2024-06-05&rft.volume=19&rft.issue=6&rft.spage=e0304858&rft.epage=e0304858&rft.pages=e0304858-e0304858&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0304858&rft_dat=%3Cgale_plos_%3EA796475914%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069270031&rft_id=info:pmid/38837990&rft_galeid=A796475914&rft_doaj_id=oai_doaj_org_article_29b10a87dc414974b1243d34c2194e72&rfr_iscdi=true