Trajectory-driven computational analysis for element characterization in Trypanosoma cruzi video microscopy

Optical microscopy videos enable experts to analyze the motion of several biological elements. Particularly in blood samples infected with Trypanosoma cruzi (T. cruzi), microscopy videos reveal a dynamic scenario where the parasites' motions are conspicuous. While parasites have self-motion, ce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2024-06, Vol.19 (6), p.e0304716-e0304716
Hauptverfasser: Martins, Geovani L, Ferreira, Daniel S, Carneiro, Claudia M, Nogueira-Paiva, Nivia C, Bianchi, Andrea G C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0304716
container_issue 6
container_start_page e0304716
container_title PloS one
container_volume 19
creator Martins, Geovani L
Ferreira, Daniel S
Carneiro, Claudia M
Nogueira-Paiva, Nivia C
Bianchi, Andrea G C
description Optical microscopy videos enable experts to analyze the motion of several biological elements. Particularly in blood samples infected with Trypanosoma cruzi (T. cruzi), microscopy videos reveal a dynamic scenario where the parasites' motions are conspicuous. While parasites have self-motion, cells are inert and may assume some displacement under dynamic events, such as fluids and microscope focus adjustments. This paper analyzes the trajectory of T. cruzi and blood cells to discriminate between these elements by identifying the following motion patterns: collateral, fluctuating, and pan-tilt-zoom (PTZ). We consider two approaches: i) classification experiments for discrimination between parasites and cells; and ii) clustering experiments to identify the cell motion. We propose the trajectory step dispersion (TSD) descriptor based on standard deviation to characterize these elements, outperforming state-of-the-art descriptors. Our results confirm motion is valuable in discriminating T. cruzi of the cells. Since the parasites perform the collateral motion, their trajectory steps tend to randomness. The cells may assume fluctuating motion following a homogeneous and directional path or PTZ motion with trajectory steps in a restricted area. Thus, our findings may contribute to developing new computational tools focused on trajectory analysis, which can advance the study and medical diagnosis of Chagas disease.
doi_str_mv 10.1371/journal.pone.0304716
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3069269642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A796141755</galeid><doaj_id>oai_doaj_org_article_c1ac80013fe1483aa7f71b89b277e3cc</doaj_id><sourcerecordid>A796141755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c572t-2ecb81320840e6b39abae59ea443f12cc7a9e73d6f80705905d287741544dc593</originalsourceid><addsrcrecordid>eNqNk22L1DAQx4so3nn6DUQLguiLXfPUJn0lx-HDwsGBrr4N03S6m7Vt1qRd3Pv0Zh_u2Mq9kEASJr_5TzKZSZKXlEwpl_TDyg2-g2a6dh1OCSdC0vxRck4LziY5I_zxyf4seRbCipCMqzx_mpxxpVihJDtPfs09rND0zm8nlbcb7FLj2vXQQ29dlE8hTttgQ1o7n2KDLXZ9apbgwfTo7e2eS22Xzv12DZ0LroXU-OHWphtboUtba7wLxq23z5MnNTQBXxzXi-TH50_zq6-T65svs6vL64nJJOsnDE2pKGdECYJ5yQsoAbMCQQheU2aMhAIlr_JaEUmygmQVU1IKmglRmazgF8nrg-66cUEf8xQ0J3nB8iIXLBKzA1E5WOm1ty34rXZg9d7g_EKD761pUBsKRhFCeY1UKA4ga0lLVZRMSuTGRK2Px2hD2WJlYn48NCPR8Ulnl3rhNppSKnJJVFR4d1Tw7veAodetDQabBjp0w_7iIlOESRHRN_-gDz_vSC0gvsB2tYuBzU5UX8oip4LKLIvU9AEqjgrjn8Wqqm20jxzejxwi0-OffgFDCHr2_dv_szc_x-zbE3aJ0PTL4JphV1lhDIoDuKuo4LG-zzIletcUd9nQu6bQx6aIbq9Of-je6a4L-F95eAj2</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069269642</pqid></control><display><type>article</type><title>Trajectory-driven computational analysis for element characterization in Trypanosoma cruzi video microscopy</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Martins, Geovani L ; Ferreira, Daniel S ; Carneiro, Claudia M ; Nogueira-Paiva, Nivia C ; Bianchi, Andrea G C</creator><contributor>Saraiva, Roberto Magalhães</contributor><creatorcontrib>Martins, Geovani L ; Ferreira, Daniel S ; Carneiro, Claudia M ; Nogueira-Paiva, Nivia C ; Bianchi, Andrea G C ; Saraiva, Roberto Magalhães</creatorcontrib><description>Optical microscopy videos enable experts to analyze the motion of several biological elements. Particularly in blood samples infected with Trypanosoma cruzi (T. cruzi), microscopy videos reveal a dynamic scenario where the parasites' motions are conspicuous. While parasites have self-motion, cells are inert and may assume some displacement under dynamic events, such as fluids and microscope focus adjustments. This paper analyzes the trajectory of T. cruzi and blood cells to discriminate between these elements by identifying the following motion patterns: collateral, fluctuating, and pan-tilt-zoom (PTZ). We consider two approaches: i) classification experiments for discrimination between parasites and cells; and ii) clustering experiments to identify the cell motion. We propose the trajectory step dispersion (TSD) descriptor based on standard deviation to characterize these elements, outperforming state-of-the-art descriptors. Our results confirm motion is valuable in discriminating T. cruzi of the cells. Since the parasites perform the collateral motion, their trajectory steps tend to randomness. The cells may assume fluctuating motion following a homogeneous and directional path or PTZ motion with trajectory steps in a restricted area. Thus, our findings may contribute to developing new computational tools focused on trajectory analysis, which can advance the study and medical diagnosis of Chagas disease.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0304716</identifier><identifier>PMID: 38829872</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology and Life Sciences ; Blood ; Blood cells ; Chagas disease ; Chagas Disease - parasitology ; Classification ; Clustering ; Computer applications ; Datasets ; Humans ; Image Processing, Computer-Assisted - methods ; Light microscopy ; Medical research ; Medicine and Health Sciences ; Medicine, Experimental ; Microscope and microscopy ; Microscopy ; Microscopy, Video - methods ; Motility ; Optical microscopy ; Parasites ; Physical Sciences ; Protozoa ; Research and Analysis Methods ; Software ; Trajectory analysis ; Trypanosoma cruzi ; Trypanosoma cruzi - physiology ; Vector-borne diseases ; Video</subject><ispartof>PloS one, 2024-06, Vol.19 (6), p.e0304716-e0304716</ispartof><rights>Copyright: © 2024 Martins et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Martins et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Martins et al 2024 Martins et al</rights><rights>2024 Martins et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c572t-2ecb81320840e6b39abae59ea443f12cc7a9e73d6f80705905d287741544dc593</cites><orcidid>0000-0003-1397-4528 ; 0000-0002-4951-1536</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11146708/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11146708/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38829872$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Saraiva, Roberto Magalhães</contributor><creatorcontrib>Martins, Geovani L</creatorcontrib><creatorcontrib>Ferreira, Daniel S</creatorcontrib><creatorcontrib>Carneiro, Claudia M</creatorcontrib><creatorcontrib>Nogueira-Paiva, Nivia C</creatorcontrib><creatorcontrib>Bianchi, Andrea G C</creatorcontrib><title>Trajectory-driven computational analysis for element characterization in Trypanosoma cruzi video microscopy</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Optical microscopy videos enable experts to analyze the motion of several biological elements. Particularly in blood samples infected with Trypanosoma cruzi (T. cruzi), microscopy videos reveal a dynamic scenario where the parasites' motions are conspicuous. While parasites have self-motion, cells are inert and may assume some displacement under dynamic events, such as fluids and microscope focus adjustments. This paper analyzes the trajectory of T. cruzi and blood cells to discriminate between these elements by identifying the following motion patterns: collateral, fluctuating, and pan-tilt-zoom (PTZ). We consider two approaches: i) classification experiments for discrimination between parasites and cells; and ii) clustering experiments to identify the cell motion. We propose the trajectory step dispersion (TSD) descriptor based on standard deviation to characterize these elements, outperforming state-of-the-art descriptors. Our results confirm motion is valuable in discriminating T. cruzi of the cells. Since the parasites perform the collateral motion, their trajectory steps tend to randomness. The cells may assume fluctuating motion following a homogeneous and directional path or PTZ motion with trajectory steps in a restricted area. Thus, our findings may contribute to developing new computational tools focused on trajectory analysis, which can advance the study and medical diagnosis of Chagas disease.</description><subject>Biology and Life Sciences</subject><subject>Blood</subject><subject>Blood cells</subject><subject>Chagas disease</subject><subject>Chagas Disease - parasitology</subject><subject>Classification</subject><subject>Clustering</subject><subject>Computer applications</subject><subject>Datasets</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Light microscopy</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Medicine, Experimental</subject><subject>Microscope and microscopy</subject><subject>Microscopy</subject><subject>Microscopy, Video - methods</subject><subject>Motility</subject><subject>Optical microscopy</subject><subject>Parasites</subject><subject>Physical Sciences</subject><subject>Protozoa</subject><subject>Research and Analysis Methods</subject><subject>Software</subject><subject>Trajectory analysis</subject><subject>Trypanosoma cruzi</subject><subject>Trypanosoma cruzi - physiology</subject><subject>Vector-borne diseases</subject><subject>Video</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk22L1DAQx4so3nn6DUQLguiLXfPUJn0lx-HDwsGBrr4N03S6m7Vt1qRd3Pv0Zh_u2Mq9kEASJr_5TzKZSZKXlEwpl_TDyg2-g2a6dh1OCSdC0vxRck4LziY5I_zxyf4seRbCipCMqzx_mpxxpVihJDtPfs09rND0zm8nlbcb7FLj2vXQQ29dlE8hTttgQ1o7n2KDLXZ9apbgwfTo7e2eS22Xzv12DZ0LroXU-OHWphtboUtba7wLxq23z5MnNTQBXxzXi-TH50_zq6-T65svs6vL64nJJOsnDE2pKGdECYJ5yQsoAbMCQQheU2aMhAIlr_JaEUmygmQVU1IKmglRmazgF8nrg-66cUEf8xQ0J3nB8iIXLBKzA1E5WOm1ty34rXZg9d7g_EKD761pUBsKRhFCeY1UKA4ga0lLVZRMSuTGRK2Px2hD2WJlYn48NCPR8Ulnl3rhNppSKnJJVFR4d1Tw7veAodetDQabBjp0w_7iIlOESRHRN_-gDz_vSC0gvsB2tYuBzU5UX8oip4LKLIvU9AEqjgrjn8Wqqm20jxzejxwi0-OffgFDCHr2_dv_szc_x-zbE3aJ0PTL4JphV1lhDIoDuKuo4LG-zzIletcUd9nQu6bQx6aIbq9Of-je6a4L-F95eAj2</recordid><startdate>20240603</startdate><enddate>20240603</enddate><creator>Martins, Geovani L</creator><creator>Ferreira, Daniel S</creator><creator>Carneiro, Claudia M</creator><creator>Nogueira-Paiva, Nivia C</creator><creator>Bianchi, Andrea G C</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1397-4528</orcidid><orcidid>https://orcid.org/0000-0002-4951-1536</orcidid></search><sort><creationdate>20240603</creationdate><title>Trajectory-driven computational analysis for element characterization in Trypanosoma cruzi video microscopy</title><author>Martins, Geovani L ; Ferreira, Daniel S ; Carneiro, Claudia M ; Nogueira-Paiva, Nivia C ; Bianchi, Andrea G C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c572t-2ecb81320840e6b39abae59ea443f12cc7a9e73d6f80705905d287741544dc593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biology and Life Sciences</topic><topic>Blood</topic><topic>Blood cells</topic><topic>Chagas disease</topic><topic>Chagas Disease - parasitology</topic><topic>Classification</topic><topic>Clustering</topic><topic>Computer applications</topic><topic>Datasets</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Light microscopy</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Medicine, Experimental</topic><topic>Microscope and microscopy</topic><topic>Microscopy</topic><topic>Microscopy, Video - methods</topic><topic>Motility</topic><topic>Optical microscopy</topic><topic>Parasites</topic><topic>Physical Sciences</topic><topic>Protozoa</topic><topic>Research and Analysis Methods</topic><topic>Software</topic><topic>Trajectory analysis</topic><topic>Trypanosoma cruzi</topic><topic>Trypanosoma cruzi - physiology</topic><topic>Vector-borne diseases</topic><topic>Video</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martins, Geovani L</creatorcontrib><creatorcontrib>Ferreira, Daniel S</creatorcontrib><creatorcontrib>Carneiro, Claudia M</creatorcontrib><creatorcontrib>Nogueira-Paiva, Nivia C</creatorcontrib><creatorcontrib>Bianchi, Andrea G C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martins, Geovani L</au><au>Ferreira, Daniel S</au><au>Carneiro, Claudia M</au><au>Nogueira-Paiva, Nivia C</au><au>Bianchi, Andrea G C</au><au>Saraiva, Roberto Magalhães</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trajectory-driven computational analysis for element characterization in Trypanosoma cruzi video microscopy</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-06-03</date><risdate>2024</risdate><volume>19</volume><issue>6</issue><spage>e0304716</spage><epage>e0304716</epage><pages>e0304716-e0304716</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Optical microscopy videos enable experts to analyze the motion of several biological elements. Particularly in blood samples infected with Trypanosoma cruzi (T. cruzi), microscopy videos reveal a dynamic scenario where the parasites' motions are conspicuous. While parasites have self-motion, cells are inert and may assume some displacement under dynamic events, such as fluids and microscope focus adjustments. This paper analyzes the trajectory of T. cruzi and blood cells to discriminate between these elements by identifying the following motion patterns: collateral, fluctuating, and pan-tilt-zoom (PTZ). We consider two approaches: i) classification experiments for discrimination between parasites and cells; and ii) clustering experiments to identify the cell motion. We propose the trajectory step dispersion (TSD) descriptor based on standard deviation to characterize these elements, outperforming state-of-the-art descriptors. Our results confirm motion is valuable in discriminating T. cruzi of the cells. Since the parasites perform the collateral motion, their trajectory steps tend to randomness. The cells may assume fluctuating motion following a homogeneous and directional path or PTZ motion with trajectory steps in a restricted area. Thus, our findings may contribute to developing new computational tools focused on trajectory analysis, which can advance the study and medical diagnosis of Chagas disease.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>38829872</pmid><doi>10.1371/journal.pone.0304716</doi><tpages>e0304716</tpages><orcidid>https://orcid.org/0000-0003-1397-4528</orcidid><orcidid>https://orcid.org/0000-0002-4951-1536</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2024-06, Vol.19 (6), p.e0304716-e0304716
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_3069269642
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Biology and Life Sciences
Blood
Blood cells
Chagas disease
Chagas Disease - parasitology
Classification
Clustering
Computer applications
Datasets
Humans
Image Processing, Computer-Assisted - methods
Light microscopy
Medical research
Medicine and Health Sciences
Medicine, Experimental
Microscope and microscopy
Microscopy
Microscopy, Video - methods
Motility
Optical microscopy
Parasites
Physical Sciences
Protozoa
Research and Analysis Methods
Software
Trajectory analysis
Trypanosoma cruzi
Trypanosoma cruzi - physiology
Vector-borne diseases
Video
title Trajectory-driven computational analysis for element characterization in Trypanosoma cruzi video microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A17%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trajectory-driven%20computational%20analysis%20for%20element%20characterization%20in%20Trypanosoma%20cruzi%20video%20microscopy&rft.jtitle=PloS%20one&rft.au=Martins,%20Geovani%20L&rft.date=2024-06-03&rft.volume=19&rft.issue=6&rft.spage=e0304716&rft.epage=e0304716&rft.pages=e0304716-e0304716&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0304716&rft_dat=%3Cgale_plos_%3EA796141755%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069269642&rft_id=info:pmid/38829872&rft_galeid=A796141755&rft_doaj_id=oai_doaj_org_article_c1ac80013fe1483aa7f71b89b277e3cc&rfr_iscdi=true