Characteristics of annular surface dielectric barrier discharge with microsecond pulse under water-covered condition

Surface dielectric barrier discharge (SDBD) has wide applications in flow control, wastewater treatment, and biomedicine. The dielectric surface of an SDBD actuator is generally attached to the water droplets during applications. Thus far, only a few studies have been conducted on the effects of wat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2024-01, Vol.19 (1), p.e0287773-e0287773
Hauptverfasser: Xu, Yaozong, Lai, Yundong, Qin, Junting, Gong, Ziyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Surface dielectric barrier discharge (SDBD) has wide applications in flow control, wastewater treatment, and biomedicine. The dielectric surface of an SDBD actuator is generally attached to the water droplets during applications. Thus far, only a few studies have been conducted on the effects of water covering the dielectric surface on the discharge characteristics of SDBD. Therefore, the effects of water droplets on the discharge of an SDBD actuator based on a repetitive microsecond pulse power supply were investigated in this study. The results show that a filament micro-discharge channel forms between the light and dark regions at the internal edge of the SDBD high-voltage electrode and develops toward the center of the dielectric surface in the region without water droplet coverage. SDBD in the water-covered region was divided into two stages. This paper compares the electrical characteristics of SDBD with and without water droplet, and explores the electric field distortion effect of water droplet endpoints through 3D simulation.Based on the theories of water droplet polarization and gas discharge, the effects of water droplets on plasma development and surface charge accumulation under water-covered condition were analyzed. The water droplet plays a similar role as a "secondary electrode" during the discharge process.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0287773