Calibration of pedestrian ingress model based on CCTV surveillance data using machine learning methods

Machine learning methods and agent-based models enable the optimization of the operation of high-capacity facilities. In this paper, we propose a method for automatically extracting and cleaning pedestrian traffic detector data for subsequent calibration of the ingress pedestrian model. The data was...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2024-01, Vol.19 (1), p.e0293679-e0293679
Hauptverfasser: Pálková, Martina, Uhlík, Ondřej, Apeltauer, Tomáš
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0293679
container_issue 1
container_start_page e0293679
container_title PloS one
container_volume 19
creator Pálková, Martina
Uhlík, Ondřej
Apeltauer, Tomáš
description Machine learning methods and agent-based models enable the optimization of the operation of high-capacity facilities. In this paper, we propose a method for automatically extracting and cleaning pedestrian traffic detector data for subsequent calibration of the ingress pedestrian model. The data was obtained from the waiting room traffic of a vaccination center. Walking speed distribution, the number of stops, the distribution of waiting times, and the locations of waiting points were extracted. Of the 9 machine learning algorithms, the random forest model achieved the highest accuracy in classifying valid data and noise. The proposed microscopic calibration allows for more accurate capacity assessment testing, procedural changes testing, and geometric modifications testing in parts of the facility adjacent to the calibrated parts. The results show that the proposed method achieves state-of-the-art performance on a violent-flows dataset. The proposed method has the potential to significantly improve the accuracy and efficiency of input model predictions and optimize the operation of high-capacity facilities.
doi_str_mv 10.1371/journal.pone.0293679
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3069213723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A779731527</galeid><doaj_id>oai_doaj_org_article_3b33f8fa3f0544e28df2e3dec6f2e45d</doaj_id><sourcerecordid>A779731527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c642t-4285faced1b8dfe932b7b317eeff62c9d9450444c66f5fc14c30ba03f2c2bdae3</originalsourceid><addsrcrecordid>eNqNk11rFDEUhgdRbK3-A9EBQfRi13zMJDNXUhY_FgoFrb0NmeRkN0tmsk1miv57M91p2ZFeSC4STp7znuRNTpa9xmiJKcefdn4InXTLve9giUhNGa-fZKe4pmTBCKJPj9Yn2YsYdwiVtGLseXZCK0JZjfBpZlbS2SbI3vou9ybfg4bYByu73HabADHmrdfg8kZG0HmCVqur6zwO4Rasc7JTkGvZy3yIic9bqba2g9yBDN1dAPqt1_Fl9sxIF-HVNJ9lv75-uVp9X1xcfluvzi8WihWkXxSkKo1UoHFTaQPp-A1vKOYAxjCial0XJSqKQjFmSqNwoShqJKKGKNJoCfQse3vQ3TsfxWRRFBSxmiTXCE3E-kBoL3diH2wrwx_hpRV3AR82QobeKgeCNpSaykhqUFkUQNKRCFANiqW5KHXS-jxVG5oWtIKuD9LNROc7nd2Kjb8VGPG6rCuWFD5MCsHfDMl50dqoYDQW_BAFqTEvE8l5Qt_9gz5-vYnayHQD2xmfCqtRVJxzXnOKSzJqLR-h0tDQWpU-lLEpPkv4OEtITA-_-40cYhTrnz_-n728nrPvj9gtSNdvo3fD-B3jHCwOoAo-xgDmwWWMxNgP926IsR_E1A8p7c3xCz0k3TcA_QuQdAdK</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069213723</pqid></control><display><type>article</type><title>Calibration of pedestrian ingress model based on CCTV surveillance data using machine learning methods</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Pálková, Martina ; Uhlík, Ondřej ; Apeltauer, Tomáš</creator><contributor>Imoize, Agbotiname Lucky</contributor><creatorcontrib>Pálková, Martina ; Uhlík, Ondřej ; Apeltauer, Tomáš ; Imoize, Agbotiname Lucky</creatorcontrib><description>Machine learning methods and agent-based models enable the optimization of the operation of high-capacity facilities. In this paper, we propose a method for automatically extracting and cleaning pedestrian traffic detector data for subsequent calibration of the ingress pedestrian model. The data was obtained from the waiting room traffic of a vaccination center. Walking speed distribution, the number of stops, the distribution of waiting times, and the locations of waiting points were extracted. Of the 9 machine learning algorithms, the random forest model achieved the highest accuracy in classifying valid data and noise. The proposed microscopic calibration allows for more accurate capacity assessment testing, procedural changes testing, and geometric modifications testing in parts of the facility adjacent to the calibrated parts. The results show that the proposed method achieves state-of-the-art performance on a violent-flows dataset. The proposed method has the potential to significantly improve the accuracy and efficiency of input model predictions and optimize the operation of high-capacity facilities.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0293679</identifier><identifier>PMID: 38236901</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Agent-based models ; Algorithms ; Analysis ; Artificial intelligence ; Biology and Life Sciences ; Calibration ; Cameras ; Classification ; Closed-circuit television ; Computer and Information Sciences ; Data mining ; Detectors ; Evacuations &amp; rescues ; Evaluation ; Heart rate ; Humans ; Immunization ; Information management ; Internet of Things ; Learning algorithms ; Machine Learning ; Medicine and Health Sciences ; Methods ; Neural networks ; Pedestrians ; Physical Sciences ; Radio frequency identification ; Research and Analysis Methods ; Social networks ; Vaccination ; Waiting rooms ; Walking</subject><ispartof>PloS one, 2024-01, Vol.19 (1), p.e0293679-e0293679</ispartof><rights>Copyright: © 2024 Pálková et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Pálková et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Pálková et al 2024 Pálková et al</rights><rights>2024 Pálková et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c642t-4285faced1b8dfe932b7b317eeff62c9d9450444c66f5fc14c30ba03f2c2bdae3</cites><orcidid>0000-0001-9047-4784 ; 0000-0002-8001-6349</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10795986/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10795986/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38236901$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Imoize, Agbotiname Lucky</contributor><creatorcontrib>Pálková, Martina</creatorcontrib><creatorcontrib>Uhlík, Ondřej</creatorcontrib><creatorcontrib>Apeltauer, Tomáš</creatorcontrib><title>Calibration of pedestrian ingress model based on CCTV surveillance data using machine learning methods</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Machine learning methods and agent-based models enable the optimization of the operation of high-capacity facilities. In this paper, we propose a method for automatically extracting and cleaning pedestrian traffic detector data for subsequent calibration of the ingress pedestrian model. The data was obtained from the waiting room traffic of a vaccination center. Walking speed distribution, the number of stops, the distribution of waiting times, and the locations of waiting points were extracted. Of the 9 machine learning algorithms, the random forest model achieved the highest accuracy in classifying valid data and noise. The proposed microscopic calibration allows for more accurate capacity assessment testing, procedural changes testing, and geometric modifications testing in parts of the facility adjacent to the calibrated parts. The results show that the proposed method achieves state-of-the-art performance on a violent-flows dataset. The proposed method has the potential to significantly improve the accuracy and efficiency of input model predictions and optimize the operation of high-capacity facilities.</description><subject>Accuracy</subject><subject>Agent-based models</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial intelligence</subject><subject>Biology and Life Sciences</subject><subject>Calibration</subject><subject>Cameras</subject><subject>Classification</subject><subject>Closed-circuit television</subject><subject>Computer and Information Sciences</subject><subject>Data mining</subject><subject>Detectors</subject><subject>Evacuations &amp; rescues</subject><subject>Evaluation</subject><subject>Heart rate</subject><subject>Humans</subject><subject>Immunization</subject><subject>Information management</subject><subject>Internet of Things</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Pedestrians</subject><subject>Physical Sciences</subject><subject>Radio frequency identification</subject><subject>Research and Analysis Methods</subject><subject>Social networks</subject><subject>Vaccination</subject><subject>Waiting rooms</subject><subject>Walking</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11rFDEUhgdRbK3-A9EBQfRi13zMJDNXUhY_FgoFrb0NmeRkN0tmsk1miv57M91p2ZFeSC4STp7znuRNTpa9xmiJKcefdn4InXTLve9giUhNGa-fZKe4pmTBCKJPj9Yn2YsYdwiVtGLseXZCK0JZjfBpZlbS2SbI3vou9ybfg4bYByu73HabADHmrdfg8kZG0HmCVqur6zwO4Rasc7JTkGvZy3yIic9bqba2g9yBDN1dAPqt1_Fl9sxIF-HVNJ9lv75-uVp9X1xcfluvzi8WihWkXxSkKo1UoHFTaQPp-A1vKOYAxjCial0XJSqKQjFmSqNwoShqJKKGKNJoCfQse3vQ3TsfxWRRFBSxmiTXCE3E-kBoL3diH2wrwx_hpRV3AR82QobeKgeCNpSaykhqUFkUQNKRCFANiqW5KHXS-jxVG5oWtIKuD9LNROc7nd2Kjb8VGPG6rCuWFD5MCsHfDMl50dqoYDQW_BAFqTEvE8l5Qt_9gz5-vYnayHQD2xmfCqtRVJxzXnOKSzJqLR-h0tDQWpU-lLEpPkv4OEtITA-_-40cYhTrnz_-n728nrPvj9gtSNdvo3fD-B3jHCwOoAo-xgDmwWWMxNgP926IsR_E1A8p7c3xCz0k3TcA_QuQdAdK</recordid><startdate>20240118</startdate><enddate>20240118</enddate><creator>Pálková, Martina</creator><creator>Uhlík, Ondřej</creator><creator>Apeltauer, Tomáš</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9047-4784</orcidid><orcidid>https://orcid.org/0000-0002-8001-6349</orcidid></search><sort><creationdate>20240118</creationdate><title>Calibration of pedestrian ingress model based on CCTV surveillance data using machine learning methods</title><author>Pálková, Martina ; Uhlík, Ondřej ; Apeltauer, Tomáš</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c642t-4285faced1b8dfe932b7b317eeff62c9d9450444c66f5fc14c30ba03f2c2bdae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Agent-based models</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial intelligence</topic><topic>Biology and Life Sciences</topic><topic>Calibration</topic><topic>Cameras</topic><topic>Classification</topic><topic>Closed-circuit television</topic><topic>Computer and Information Sciences</topic><topic>Data mining</topic><topic>Detectors</topic><topic>Evacuations &amp; rescues</topic><topic>Evaluation</topic><topic>Heart rate</topic><topic>Humans</topic><topic>Immunization</topic><topic>Information management</topic><topic>Internet of Things</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Pedestrians</topic><topic>Physical Sciences</topic><topic>Radio frequency identification</topic><topic>Research and Analysis Methods</topic><topic>Social networks</topic><topic>Vaccination</topic><topic>Waiting rooms</topic><topic>Walking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pálková, Martina</creatorcontrib><creatorcontrib>Uhlík, Ondřej</creatorcontrib><creatorcontrib>Apeltauer, Tomáš</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pálková, Martina</au><au>Uhlík, Ondřej</au><au>Apeltauer, Tomáš</au><au>Imoize, Agbotiname Lucky</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calibration of pedestrian ingress model based on CCTV surveillance data using machine learning methods</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-01-18</date><risdate>2024</risdate><volume>19</volume><issue>1</issue><spage>e0293679</spage><epage>e0293679</epage><pages>e0293679-e0293679</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Machine learning methods and agent-based models enable the optimization of the operation of high-capacity facilities. In this paper, we propose a method for automatically extracting and cleaning pedestrian traffic detector data for subsequent calibration of the ingress pedestrian model. The data was obtained from the waiting room traffic of a vaccination center. Walking speed distribution, the number of stops, the distribution of waiting times, and the locations of waiting points were extracted. Of the 9 machine learning algorithms, the random forest model achieved the highest accuracy in classifying valid data and noise. The proposed microscopic calibration allows for more accurate capacity assessment testing, procedural changes testing, and geometric modifications testing in parts of the facility adjacent to the calibrated parts. The results show that the proposed method achieves state-of-the-art performance on a violent-flows dataset. The proposed method has the potential to significantly improve the accuracy and efficiency of input model predictions and optimize the operation of high-capacity facilities.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>38236901</pmid><doi>10.1371/journal.pone.0293679</doi><tpages>e0293679</tpages><orcidid>https://orcid.org/0000-0001-9047-4784</orcidid><orcidid>https://orcid.org/0000-0002-8001-6349</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2024-01, Vol.19 (1), p.e0293679-e0293679
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_3069213723
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Accuracy
Agent-based models
Algorithms
Analysis
Artificial intelligence
Biology and Life Sciences
Calibration
Cameras
Classification
Closed-circuit television
Computer and Information Sciences
Data mining
Detectors
Evacuations & rescues
Evaluation
Heart rate
Humans
Immunization
Information management
Internet of Things
Learning algorithms
Machine Learning
Medicine and Health Sciences
Methods
Neural networks
Pedestrians
Physical Sciences
Radio frequency identification
Research and Analysis Methods
Social networks
Vaccination
Waiting rooms
Walking
title Calibration of pedestrian ingress model based on CCTV surveillance data using machine learning methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T23%3A30%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calibration%20of%20pedestrian%20ingress%20model%20based%20on%20CCTV%20surveillance%20data%20using%20machine%20learning%20methods&rft.jtitle=PloS%20one&rft.au=P%C3%A1lkov%C3%A1,%20Martina&rft.date=2024-01-18&rft.volume=19&rft.issue=1&rft.spage=e0293679&rft.epage=e0293679&rft.pages=e0293679-e0293679&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0293679&rft_dat=%3Cgale_plos_%3EA779731527%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069213723&rft_id=info:pmid/38236901&rft_galeid=A779731527&rft_doaj_id=oai_doaj_org_article_3b33f8fa3f0544e28df2e3dec6f2e45d&rfr_iscdi=true