Cell formation and layout design using genetic algorithm and TOPSIS: A case study of Hydraulic Industries State Company
Cell formation (CF) and machine cell layout are two critical issues in the design of a cellular manufacturing system (CMS). The complexity of the problem has an exponential impact on the time required to compute a solution, making it an NP-hard (complex and non-deterministic polynomial-time hard) pr...
Gespeichert in:
Veröffentlicht in: | PloS one 2024-01, Vol.19 (1), p.e0296133-e0296133 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0296133 |
---|---|
container_issue | 1 |
container_start_page | e0296133 |
container_title | PloS one |
container_volume | 19 |
creator | Dhayef, Dhulfiqar Hakeem Al-Zubaidi, Sawsan S A Al-Kindi, Luma A H Tirkolaee, Erfan Babaee |
description | Cell formation (CF) and machine cell layout are two critical issues in the design of a cellular manufacturing system (CMS). The complexity of the problem has an exponential impact on the time required to compute a solution, making it an NP-hard (complex and non-deterministic polynomial-time hard) problem. Therefore, it has been widely solved using effective meta-heuristics. The paper introduces a novel meta-heuristic strategy that utilizes the Genetic Algorithm (GA) and the Technique of Order Preference Similarity to the Ideal Solution (TOPSIS) to identify the most favorable solution for both flexible CF and machine layout within each cell. GA is employed to identify machine cells and part families based on Grouping Efficiency (GE) as a fitness function. In contrast to previous research, which considered grouping efficiency with a weight factor (q = 0.5), this study utilizes various weight factor values (0.1, 0.3, 0.7, 0.5, and 0.9). The proposed solution suggests using the TOPSIS technique to determine the most suitable value for the weighting factor. This factor is critical in enabling CMS to design the necessary flexibility to control the cell size. The proposed approach aims to arrange machines to enhance GE, System Utilization (SU), and System Flexibility (SF) while minimizing the cost of material handling between machines as well as inter- and intracellular movements (TC). The results of the proposed approach presented here show either better or comparable performance to the benchmark instances collected from existing literature. |
doi_str_mv | 10.1371/journal.pone.0296133 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3069202237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A778109292</galeid><doaj_id>oai_doaj_org_article_2cd050de1ae241cc87e3cde69de00358</doaj_id><sourcerecordid>A778109292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c642t-1c47cf776488a958c34d67de3364cb22d29ac28188ba9954e098b9c526f8d40d3</originalsourceid><addsrcrecordid>eNqNk9-PEyEQxzdG452n_4FREhOjD6382GXBF9M06jW5pMaevhIK7JZmF3rAqv3vpdfepTX3YHiADJ_5DjPDFMVLBMeI1OjD2g_ByW688c6MIeYUEfKoOEec4BHFkDw-Op8Vz2JcQ1gRRunT4owwVMOakPPi99R0HWh86GWy3gHpNOjk1g8JaBNt68AQrWtBa5xJVgHZtT7YtOpvyev5t8Vs8RFMgJLRgJgGvQW-AZdbHeTQZX7m9BBTsCaCRZLJgKnvN9JtnxdPGtlF8-KwXxQ_vny-nl6OruZfZ9PJ1UjREqcRUmWtmrqmJWOSV0yRUtNaG0JoqZYYa8ylwgwxtpScV6WBnC25qjBtmC6hJhfF673upvNRHGoWBYGUY4gxqTMx2xPay7XYBNvLsBVeWnFr8KEVMuTUOyOw0rCC2iBpcImUYrUhShvKtYGQVCxrfTpEG5a90cq4FGR3Inp64-xKtP6XQLCmhJdVVnh3UAj-ZjAxid5GlXsknfFDFJgjiDiF1e7hb_5BH07vQLUyZ2Bd43NgtRMVk7pmCHLMcabGD1B5adNblX9YY7P9xOH9iUNmkvmTWjnEKGaL7__Pzn-esm-P2JWRXVpF3w27zxlPwXIPquBjDKa5rzKCYjcgd9UQuwERhwHJbq-OO3TvdDcR5C8KDQqu</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069202237</pqid></control><display><type>article</type><title>Cell formation and layout design using genetic algorithm and TOPSIS: A case study of Hydraulic Industries State Company</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Dhayef, Dhulfiqar Hakeem ; Al-Zubaidi, Sawsan S A ; Al-Kindi, Luma A H ; Tirkolaee, Erfan Babaee</creator><contributor>Chu, Ta-Chung</contributor><creatorcontrib>Dhayef, Dhulfiqar Hakeem ; Al-Zubaidi, Sawsan S A ; Al-Kindi, Luma A H ; Tirkolaee, Erfan Babaee ; Chu, Ta-Chung</creatorcontrib><description>Cell formation (CF) and machine cell layout are two critical issues in the design of a cellular manufacturing system (CMS). The complexity of the problem has an exponential impact on the time required to compute a solution, making it an NP-hard (complex and non-deterministic polynomial-time hard) problem. Therefore, it has been widely solved using effective meta-heuristics. The paper introduces a novel meta-heuristic strategy that utilizes the Genetic Algorithm (GA) and the Technique of Order Preference Similarity to the Ideal Solution (TOPSIS) to identify the most favorable solution for both flexible CF and machine layout within each cell. GA is employed to identify machine cells and part families based on Grouping Efficiency (GE) as a fitness function. In contrast to previous research, which considered grouping efficiency with a weight factor (q = 0.5), this study utilizes various weight factor values (0.1, 0.3, 0.7, 0.5, and 0.9). The proposed solution suggests using the TOPSIS technique to determine the most suitable value for the weighting factor. This factor is critical in enabling CMS to design the necessary flexibility to control the cell size. The proposed approach aims to arrange machines to enhance GE, System Utilization (SU), and System Flexibility (SF) while minimizing the cost of material handling between machines as well as inter- and intracellular movements (TC). The results of the proposed approach presented here show either better or comparable performance to the benchmark instances collected from existing literature.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0296133</identifier><identifier>PMID: 38170733</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptability ; Algorithms ; Analysis ; Biology and Life Sciences ; Case studies ; Cell size ; Cells ; Cellular manufacture ; Complexity ; Design ; Efficiency ; Factorial experiments ; Flexibility ; Genetic algorithms ; Genetic research ; Genetics ; Group technology ; Heuristic ; Heuristic methods ; Heuristics ; Humans ; Industry ; Layouts ; Linear programming ; Literature reviews ; Manufacturing cells ; Materials handling ; Mathematical models ; Optimization ; Physical Sciences ; Polynomials ; Problem solving ; Productivity ; Research and Analysis Methods ; Social Sciences ; Work in process</subject><ispartof>PloS one, 2024-01, Vol.19 (1), p.e0296133-e0296133</ispartof><rights>Copyright: © 2024 Dhayef et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Dhayef et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Dhayef et al 2024 Dhayef et al</rights><rights>2024 Dhayef et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c642t-1c47cf776488a958c34d67de3364cb22d29ac28188ba9954e098b9c526f8d40d3</cites><orcidid>0000-0003-1664-9210 ; 0000-0002-5815-0023</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10763945/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10763945/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38170733$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Chu, Ta-Chung</contributor><creatorcontrib>Dhayef, Dhulfiqar Hakeem</creatorcontrib><creatorcontrib>Al-Zubaidi, Sawsan S A</creatorcontrib><creatorcontrib>Al-Kindi, Luma A H</creatorcontrib><creatorcontrib>Tirkolaee, Erfan Babaee</creatorcontrib><title>Cell formation and layout design using genetic algorithm and TOPSIS: A case study of Hydraulic Industries State Company</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Cell formation (CF) and machine cell layout are two critical issues in the design of a cellular manufacturing system (CMS). The complexity of the problem has an exponential impact on the time required to compute a solution, making it an NP-hard (complex and non-deterministic polynomial-time hard) problem. Therefore, it has been widely solved using effective meta-heuristics. The paper introduces a novel meta-heuristic strategy that utilizes the Genetic Algorithm (GA) and the Technique of Order Preference Similarity to the Ideal Solution (TOPSIS) to identify the most favorable solution for both flexible CF and machine layout within each cell. GA is employed to identify machine cells and part families based on Grouping Efficiency (GE) as a fitness function. In contrast to previous research, which considered grouping efficiency with a weight factor (q = 0.5), this study utilizes various weight factor values (0.1, 0.3, 0.7, 0.5, and 0.9). The proposed solution suggests using the TOPSIS technique to determine the most suitable value for the weighting factor. This factor is critical in enabling CMS to design the necessary flexibility to control the cell size. The proposed approach aims to arrange machines to enhance GE, System Utilization (SU), and System Flexibility (SF) while minimizing the cost of material handling between machines as well as inter- and intracellular movements (TC). The results of the proposed approach presented here show either better or comparable performance to the benchmark instances collected from existing literature.</description><subject>Adaptability</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Biology and Life Sciences</subject><subject>Case studies</subject><subject>Cell size</subject><subject>Cells</subject><subject>Cellular manufacture</subject><subject>Complexity</subject><subject>Design</subject><subject>Efficiency</subject><subject>Factorial experiments</subject><subject>Flexibility</subject><subject>Genetic algorithms</subject><subject>Genetic research</subject><subject>Genetics</subject><subject>Group technology</subject><subject>Heuristic</subject><subject>Heuristic methods</subject><subject>Heuristics</subject><subject>Humans</subject><subject>Industry</subject><subject>Layouts</subject><subject>Linear programming</subject><subject>Literature reviews</subject><subject>Manufacturing cells</subject><subject>Materials handling</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Physical Sciences</subject><subject>Polynomials</subject><subject>Problem solving</subject><subject>Productivity</subject><subject>Research and Analysis Methods</subject><subject>Social Sciences</subject><subject>Work in process</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9-PEyEQxzdG452n_4FREhOjD6382GXBF9M06jW5pMaevhIK7JZmF3rAqv3vpdfepTX3YHiADJ_5DjPDFMVLBMeI1OjD2g_ByW688c6MIeYUEfKoOEec4BHFkDw-Op8Vz2JcQ1gRRunT4owwVMOakPPi99R0HWh86GWy3gHpNOjk1g8JaBNt68AQrWtBa5xJVgHZtT7YtOpvyev5t8Vs8RFMgJLRgJgGvQW-AZdbHeTQZX7m9BBTsCaCRZLJgKnvN9JtnxdPGtlF8-KwXxQ_vny-nl6OruZfZ9PJ1UjREqcRUmWtmrqmJWOSV0yRUtNaG0JoqZYYa8ylwgwxtpScV6WBnC25qjBtmC6hJhfF673upvNRHGoWBYGUY4gxqTMx2xPay7XYBNvLsBVeWnFr8KEVMuTUOyOw0rCC2iBpcImUYrUhShvKtYGQVCxrfTpEG5a90cq4FGR3Inp64-xKtP6XQLCmhJdVVnh3UAj-ZjAxid5GlXsknfFDFJgjiDiF1e7hb_5BH07vQLUyZ2Bd43NgtRMVk7pmCHLMcabGD1B5adNblX9YY7P9xOH9iUNmkvmTWjnEKGaL7__Pzn-esm-P2JWRXVpF3w27zxlPwXIPquBjDKa5rzKCYjcgd9UQuwERhwHJbq-OO3TvdDcR5C8KDQqu</recordid><startdate>20240103</startdate><enddate>20240103</enddate><creator>Dhayef, Dhulfiqar Hakeem</creator><creator>Al-Zubaidi, Sawsan S A</creator><creator>Al-Kindi, Luma A H</creator><creator>Tirkolaee, Erfan Babaee</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1664-9210</orcidid><orcidid>https://orcid.org/0000-0002-5815-0023</orcidid></search><sort><creationdate>20240103</creationdate><title>Cell formation and layout design using genetic algorithm and TOPSIS: A case study of Hydraulic Industries State Company</title><author>Dhayef, Dhulfiqar Hakeem ; Al-Zubaidi, Sawsan S A ; Al-Kindi, Luma A H ; Tirkolaee, Erfan Babaee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c642t-1c47cf776488a958c34d67de3364cb22d29ac28188ba9954e098b9c526f8d40d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptability</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Biology and Life Sciences</topic><topic>Case studies</topic><topic>Cell size</topic><topic>Cells</topic><topic>Cellular manufacture</topic><topic>Complexity</topic><topic>Design</topic><topic>Efficiency</topic><topic>Factorial experiments</topic><topic>Flexibility</topic><topic>Genetic algorithms</topic><topic>Genetic research</topic><topic>Genetics</topic><topic>Group technology</topic><topic>Heuristic</topic><topic>Heuristic methods</topic><topic>Heuristics</topic><topic>Humans</topic><topic>Industry</topic><topic>Layouts</topic><topic>Linear programming</topic><topic>Literature reviews</topic><topic>Manufacturing cells</topic><topic>Materials handling</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Physical Sciences</topic><topic>Polynomials</topic><topic>Problem solving</topic><topic>Productivity</topic><topic>Research and Analysis Methods</topic><topic>Social Sciences</topic><topic>Work in process</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhayef, Dhulfiqar Hakeem</creatorcontrib><creatorcontrib>Al-Zubaidi, Sawsan S A</creatorcontrib><creatorcontrib>Al-Kindi, Luma A H</creatorcontrib><creatorcontrib>Tirkolaee, Erfan Babaee</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhayef, Dhulfiqar Hakeem</au><au>Al-Zubaidi, Sawsan S A</au><au>Al-Kindi, Luma A H</au><au>Tirkolaee, Erfan Babaee</au><au>Chu, Ta-Chung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell formation and layout design using genetic algorithm and TOPSIS: A case study of Hydraulic Industries State Company</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-01-03</date><risdate>2024</risdate><volume>19</volume><issue>1</issue><spage>e0296133</spage><epage>e0296133</epage><pages>e0296133-e0296133</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Cell formation (CF) and machine cell layout are two critical issues in the design of a cellular manufacturing system (CMS). The complexity of the problem has an exponential impact on the time required to compute a solution, making it an NP-hard (complex and non-deterministic polynomial-time hard) problem. Therefore, it has been widely solved using effective meta-heuristics. The paper introduces a novel meta-heuristic strategy that utilizes the Genetic Algorithm (GA) and the Technique of Order Preference Similarity to the Ideal Solution (TOPSIS) to identify the most favorable solution for both flexible CF and machine layout within each cell. GA is employed to identify machine cells and part families based on Grouping Efficiency (GE) as a fitness function. In contrast to previous research, which considered grouping efficiency with a weight factor (q = 0.5), this study utilizes various weight factor values (0.1, 0.3, 0.7, 0.5, and 0.9). The proposed solution suggests using the TOPSIS technique to determine the most suitable value for the weighting factor. This factor is critical in enabling CMS to design the necessary flexibility to control the cell size. The proposed approach aims to arrange machines to enhance GE, System Utilization (SU), and System Flexibility (SF) while minimizing the cost of material handling between machines as well as inter- and intracellular movements (TC). The results of the proposed approach presented here show either better or comparable performance to the benchmark instances collected from existing literature.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>38170733</pmid><doi>10.1371/journal.pone.0296133</doi><tpages>e0296133</tpages><orcidid>https://orcid.org/0000-0003-1664-9210</orcidid><orcidid>https://orcid.org/0000-0002-5815-0023</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2024-01, Vol.19 (1), p.e0296133-e0296133 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_3069202237 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adaptability Algorithms Analysis Biology and Life Sciences Case studies Cell size Cells Cellular manufacture Complexity Design Efficiency Factorial experiments Flexibility Genetic algorithms Genetic research Genetics Group technology Heuristic Heuristic methods Heuristics Humans Industry Layouts Linear programming Literature reviews Manufacturing cells Materials handling Mathematical models Optimization Physical Sciences Polynomials Problem solving Productivity Research and Analysis Methods Social Sciences Work in process |
title | Cell formation and layout design using genetic algorithm and TOPSIS: A case study of Hydraulic Industries State Company |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A43%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell%20formation%20and%20layout%20design%20using%20genetic%20algorithm%20and%20TOPSIS:%20A%20case%20study%20of%20Hydraulic%20Industries%20State%20Company&rft.jtitle=PloS%20one&rft.au=Dhayef,%20Dhulfiqar%20Hakeem&rft.date=2024-01-03&rft.volume=19&rft.issue=1&rft.spage=e0296133&rft.epage=e0296133&rft.pages=e0296133-e0296133&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0296133&rft_dat=%3Cgale_plos_%3EA778109292%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069202237&rft_id=info:pmid/38170733&rft_galeid=A778109292&rft_doaj_id=oai_doaj_org_article_2cd050de1ae241cc87e3cde69de00358&rfr_iscdi=true |