Stochastic dynamical analysis for the complex infectious disease model driven by multisource noises
This paper mainly studies the dynamical behavior of the infectious disease model affected by white noise and Lévy noise. First, a stochastic model of infectious disease with secondary vaccination affected by noises is established. Besides, the existence and uniqueness of the global positive solution...
Gespeichert in:
Veröffentlicht in: | PloS one 2024-01, Vol.19 (1), p.e0296183-e0296183 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0296183 |
---|---|
container_issue | 1 |
container_start_page | e0296183 |
container_title | PloS one |
container_volume | 19 |
creator | Jian, Liqiong Bai, Xinyu Ma, Shaojuan |
description | This paper mainly studies the dynamical behavior of the infectious disease model affected by white noise and Lévy noise. First, a stochastic model of infectious disease with secondary vaccination affected by noises is established. Besides, the existence and uniqueness of the global positive solution for the stochastic model are proved based on stochastic differential equations and Lyapunov function, then the asymptotic behavior of the disease-free equilibrium point is studied. Moreover, the sufficient conditions for the extinction of the disease are obtained and the analysis showed that different noise intensity could affect the extinction of infectious disease on different degree. Finally, the theoretical results are verified by numerical simulation and some suggestions have been put forward on how to prevent the spread of diseases are presented. |
doi_str_mv | 10.1371/journal.pone.0296183 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3069202231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A778252910</galeid><doaj_id>oai_doaj_org_article_53576cdd5e6c409bb74eddf7d17b42fc</doaj_id><sourcerecordid>A778252910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c642t-bd34665ff99781d4e4740dcaabf6627dcb5650ea1b34306964a4e10ff87d53133</originalsourceid><addsrcrecordid>eNqNk11v0zAUhiMEYqPwDxBYQkJw0eKv2MkVmiY-Kk2axIBby7GPW09O3MXJtP57XJpNLdoFyoUj-zmvfd5zTlG8JnhBmCSfruPYdzosNrGDBaa1IBV7UpySmtG5oJg9Pfg_KV6kdI1xySohnhcnrCKyrEpyWpirIZq1ToM3yG473XqjA9JZeJt8Qi72aFgDMrHdBLhDvnNgBh_HhKxPoBOgNloIyPb-FjrUbFE7hsGn_DgDqIsZSi-LZ06HBK-mdVb8-vrl5_n3-cXlt-X52cXcCE6HeWMZF6J0rq5lRSwHLjm2RuvGCUGlNU0pSgyaNIwzLGrBNQeCnaukLRlhbFa83etuQkxq8iepHUsxpRmZFcs9YaO-Vpvet7rfqqi9-rsR-5XSfbYigCpZKYWxtgRhOK6bRnKw1klLZMOpM1nr83Tb2LRgDXRDr8OR6PFJ59dqFW8VwVIIUtOs8GFS6OPNCGlQrU8GQtAdZIcVrQmpOMvJZ_TdP-jj6U3USucMcq1ivtjsRNWZlBUtsyLO1OIRKn8WcvVzNzmf948CPh4FZGaAu2Glx5TU8urH_7OXv4_Z9wfsGnQY1imGMfdXl45BvgdNH1PqwT24TLDaDcO9G2o3DGoahhz25rBCD0H33c_-AMpABa4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069202231</pqid></control><display><type>article</type><title>Stochastic dynamical analysis for the complex infectious disease model driven by multisource noises</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Jian, Liqiong ; Bai, Xinyu ; Ma, Shaojuan</creator><contributor>Feng, Minyu</contributor><creatorcontrib>Jian, Liqiong ; Bai, Xinyu ; Ma, Shaojuan ; Feng, Minyu</creatorcontrib><description>This paper mainly studies the dynamical behavior of the infectious disease model affected by white noise and Lévy noise. First, a stochastic model of infectious disease with secondary vaccination affected by noises is established. Besides, the existence and uniqueness of the global positive solution for the stochastic model are proved based on stochastic differential equations and Lyapunov function, then the asymptotic behavior of the disease-free equilibrium point is studied. Moreover, the sufficient conditions for the extinction of the disease are obtained and the analysis showed that different noise intensity could affect the extinction of infectious disease on different degree. Finally, the theoretical results are verified by numerical simulation and some suggestions have been put forward on how to prevent the spread of diseases are presented.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0296183</identifier><identifier>PMID: 38175851</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Asymptomatic ; Asymptotic properties ; Biology and Life Sciences ; Cholera ; Communicable diseases ; COVID-19 vaccines ; Development and progression ; Differential equations ; Disease transmission ; Engineering and Technology ; Epidemics ; Equilibrium ; Extinction ; Infections ; Infectious diseases ; Influence ; Liapunov functions ; Mathematical models ; Medical research ; Medicine and Health Sciences ; Medicine, Experimental ; Methods ; Mortality ; Noise ; Noise intensity ; Numerical analysis ; Numerical simulations ; Parameter estimation ; Simulation methods ; Stochastic models ; Stochasticity ; Vaccination ; White noise</subject><ispartof>PloS one, 2024-01, Vol.19 (1), p.e0296183-e0296183</ispartof><rights>Copyright: © 2024 Jian et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Jian et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Jian et al 2024 Jian et al</rights><rights>2024 Jian et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c642t-bd34665ff99781d4e4740dcaabf6627dcb5650ea1b34306964a4e10ff87d53133</cites><orcidid>0000-0003-2810-586X ; 0009-0000-2444-8916</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10766192/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10766192/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38175851$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Feng, Minyu</contributor><creatorcontrib>Jian, Liqiong</creatorcontrib><creatorcontrib>Bai, Xinyu</creatorcontrib><creatorcontrib>Ma, Shaojuan</creatorcontrib><title>Stochastic dynamical analysis for the complex infectious disease model driven by multisource noises</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>This paper mainly studies the dynamical behavior of the infectious disease model affected by white noise and Lévy noise. First, a stochastic model of infectious disease with secondary vaccination affected by noises is established. Besides, the existence and uniqueness of the global positive solution for the stochastic model are proved based on stochastic differential equations and Lyapunov function, then the asymptotic behavior of the disease-free equilibrium point is studied. Moreover, the sufficient conditions for the extinction of the disease are obtained and the analysis showed that different noise intensity could affect the extinction of infectious disease on different degree. Finally, the theoretical results are verified by numerical simulation and some suggestions have been put forward on how to prevent the spread of diseases are presented.</description><subject>Analysis</subject><subject>Asymptomatic</subject><subject>Asymptotic properties</subject><subject>Biology and Life Sciences</subject><subject>Cholera</subject><subject>Communicable diseases</subject><subject>COVID-19 vaccines</subject><subject>Development and progression</subject><subject>Differential equations</subject><subject>Disease transmission</subject><subject>Engineering and Technology</subject><subject>Epidemics</subject><subject>Equilibrium</subject><subject>Extinction</subject><subject>Infections</subject><subject>Infectious diseases</subject><subject>Influence</subject><subject>Liapunov functions</subject><subject>Mathematical models</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Medicine, Experimental</subject><subject>Methods</subject><subject>Mortality</subject><subject>Noise</subject><subject>Noise intensity</subject><subject>Numerical analysis</subject><subject>Numerical simulations</subject><subject>Parameter estimation</subject><subject>Simulation methods</subject><subject>Stochastic models</subject><subject>Stochasticity</subject><subject>Vaccination</subject><subject>White noise</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11v0zAUhiMEYqPwDxBYQkJw0eKv2MkVmiY-Kk2axIBby7GPW09O3MXJtP57XJpNLdoFyoUj-zmvfd5zTlG8JnhBmCSfruPYdzosNrGDBaa1IBV7UpySmtG5oJg9Pfg_KV6kdI1xySohnhcnrCKyrEpyWpirIZq1ToM3yG473XqjA9JZeJt8Qi72aFgDMrHdBLhDvnNgBh_HhKxPoBOgNloIyPb-FjrUbFE7hsGn_DgDqIsZSi-LZ06HBK-mdVb8-vrl5_n3-cXlt-X52cXcCE6HeWMZF6J0rq5lRSwHLjm2RuvGCUGlNU0pSgyaNIwzLGrBNQeCnaukLRlhbFa83etuQkxq8iepHUsxpRmZFcs9YaO-Vpvet7rfqqi9-rsR-5XSfbYigCpZKYWxtgRhOK6bRnKw1klLZMOpM1nr83Tb2LRgDXRDr8OR6PFJ59dqFW8VwVIIUtOs8GFS6OPNCGlQrU8GQtAdZIcVrQmpOMvJZ_TdP-jj6U3USucMcq1ivtjsRNWZlBUtsyLO1OIRKn8WcvVzNzmf948CPh4FZGaAu2Glx5TU8urH_7OXv4_Z9wfsGnQY1imGMfdXl45BvgdNH1PqwT24TLDaDcO9G2o3DGoahhz25rBCD0H33c_-AMpABa4</recordid><startdate>20240104</startdate><enddate>20240104</enddate><creator>Jian, Liqiong</creator><creator>Bai, Xinyu</creator><creator>Ma, Shaojuan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2810-586X</orcidid><orcidid>https://orcid.org/0009-0000-2444-8916</orcidid></search><sort><creationdate>20240104</creationdate><title>Stochastic dynamical analysis for the complex infectious disease model driven by multisource noises</title><author>Jian, Liqiong ; Bai, Xinyu ; Ma, Shaojuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c642t-bd34665ff99781d4e4740dcaabf6627dcb5650ea1b34306964a4e10ff87d53133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analysis</topic><topic>Asymptomatic</topic><topic>Asymptotic properties</topic><topic>Biology and Life Sciences</topic><topic>Cholera</topic><topic>Communicable diseases</topic><topic>COVID-19 vaccines</topic><topic>Development and progression</topic><topic>Differential equations</topic><topic>Disease transmission</topic><topic>Engineering and Technology</topic><topic>Epidemics</topic><topic>Equilibrium</topic><topic>Extinction</topic><topic>Infections</topic><topic>Infectious diseases</topic><topic>Influence</topic><topic>Liapunov functions</topic><topic>Mathematical models</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Medicine, Experimental</topic><topic>Methods</topic><topic>Mortality</topic><topic>Noise</topic><topic>Noise intensity</topic><topic>Numerical analysis</topic><topic>Numerical simulations</topic><topic>Parameter estimation</topic><topic>Simulation methods</topic><topic>Stochastic models</topic><topic>Stochasticity</topic><topic>Vaccination</topic><topic>White noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jian, Liqiong</creatorcontrib><creatorcontrib>Bai, Xinyu</creatorcontrib><creatorcontrib>Ma, Shaojuan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jian, Liqiong</au><au>Bai, Xinyu</au><au>Ma, Shaojuan</au><au>Feng, Minyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic dynamical analysis for the complex infectious disease model driven by multisource noises</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-01-04</date><risdate>2024</risdate><volume>19</volume><issue>1</issue><spage>e0296183</spage><epage>e0296183</epage><pages>e0296183-e0296183</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>This paper mainly studies the dynamical behavior of the infectious disease model affected by white noise and Lévy noise. First, a stochastic model of infectious disease with secondary vaccination affected by noises is established. Besides, the existence and uniqueness of the global positive solution for the stochastic model are proved based on stochastic differential equations and Lyapunov function, then the asymptotic behavior of the disease-free equilibrium point is studied. Moreover, the sufficient conditions for the extinction of the disease are obtained and the analysis showed that different noise intensity could affect the extinction of infectious disease on different degree. Finally, the theoretical results are verified by numerical simulation and some suggestions have been put forward on how to prevent the spread of diseases are presented.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>38175851</pmid><doi>10.1371/journal.pone.0296183</doi><tpages>e0296183</tpages><orcidid>https://orcid.org/0000-0003-2810-586X</orcidid><orcidid>https://orcid.org/0009-0000-2444-8916</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2024-01, Vol.19 (1), p.e0296183-e0296183 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_3069202231 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Analysis Asymptomatic Asymptotic properties Biology and Life Sciences Cholera Communicable diseases COVID-19 vaccines Development and progression Differential equations Disease transmission Engineering and Technology Epidemics Equilibrium Extinction Infections Infectious diseases Influence Liapunov functions Mathematical models Medical research Medicine and Health Sciences Medicine, Experimental Methods Mortality Noise Noise intensity Numerical analysis Numerical simulations Parameter estimation Simulation methods Stochastic models Stochasticity Vaccination White noise |
title | Stochastic dynamical analysis for the complex infectious disease model driven by multisource noises |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A17%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20dynamical%20analysis%20for%20the%20complex%20infectious%20disease%20model%20driven%20by%20multisource%20noises&rft.jtitle=PloS%20one&rft.au=Jian,%20Liqiong&rft.date=2024-01-04&rft.volume=19&rft.issue=1&rft.spage=e0296183&rft.epage=e0296183&rft.pages=e0296183-e0296183&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0296183&rft_dat=%3Cgale_plos_%3EA778252910%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069202231&rft_id=info:pmid/38175851&rft_galeid=A778252910&rft_doaj_id=oai_doaj_org_article_53576cdd5e6c409bb74eddf7d17b42fc&rfr_iscdi=true |