Aedes aegypti CCEae3A carboxylase expression confers carbamate, organophosphate and limited pyrethroid resistance in a model transgenic mosquito
Insecticide resistance is a serious threat to our ability to control mosquito vectors which transmit pathogens including malaria parasites and arboviruses. Understanding the underlying mechanisms is an essential first step in tackling the challenges presented by resistance. This study aimed to funct...
Gespeichert in:
Veröffentlicht in: | PLoS neglected tropical diseases 2024-02, Vol.18 (2), p.e0011595 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | e0011595 |
container_title | PLoS neglected tropical diseases |
container_volume | 18 |
creator | Poulton, Beth C Colman, Fraser Anthousi, Amalia Sattelle, David B Lycett, Gareth J |
description | Insecticide resistance is a serious threat to our ability to control mosquito vectors which transmit pathogens including malaria parasites and arboviruses. Understanding the underlying mechanisms is an essential first step in tackling the challenges presented by resistance. This study aimed to functionally characterise the carboxylesterase, CCEae3A, the elevated expression of which has been implicated in temephos resistance in Aedes aegypti and Aedes albopictus larvae. Using our GAL4/UAS expression system, already established in insecticide-sensitive Anopheles gambiae mosquitoes, we produced transgenic An. gambiae mosquitoes that express an Ae. aegypti CCEae3A ubiquitously. This new transgenic line permits examination of CCEae3A expression in a background in which there is not a clear orthologue in Vectorbase and allows comparison with existing An. gambiae GAL4-UAS lines. Insecticide resistance profiling of these transgenic An. gambiae larvae indicated significant increases in resistance ratio for three organophosphate insecticides, temephos (6), chloropyriphos (6.6) and fenthion (3.2) when compared to the parental strain. Cross resistance to adulticides from three major insecticide classes: organophosphates (malathion, fenitrothion and pirimiphos methyl), carbamates (bendiocarb and propoxur) and pyrethroid (alpha-cypermethrin) was also detected. Resistance to certain organophosphates and carbamates validates conclusions drawn from previous expression and phenotypic data. However, detection of resistance to pirimiphos methyl and alphacypermethrin has not previously been formally associated with CCEae3A, despite occurring in Ae. aegypti strains where this gene was upregulated. Our findings highlight the importance of characterising individual resistance mechanisms, thereby ensuring accurate information is used to guide future vector control strategies. |
doi_str_mv | 10.1371/journal.pntd.0011595 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_3069183564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_52c5d4a0e1fc4c2ba57bddb4613cef1c</doaj_id><sourcerecordid>2929540840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-1cec37998e72babcb440c8375d6609bf71a17e1c520f126d1be2110f2f553c033</originalsourceid><addsrcrecordid>eNptUk1v1DAUjBCIfsA_QGCJCwd28YvjZHNcrUqpVIkLnK0X-2XXq8ROba_U_Rf9ybjdtEKIk63xzLx51hTFB-BLEA182_tDcDgsJ5fMknMA2cpXxTm0Qi7KRsjXf93PiosY95xnygreFmdiJZoGBJwXD2syFBnS9jglyzabKySxZhpD5--PA0ZidD8FitF6x7R3PYX49IwjJvrKfNii89POx2mXAYbOsMGONpFh0zFQ2gVvDcsONiZ0mph1DNnoDQ0sBXRxS87qDMS7g03-XfGmxyHS-_m8LH5_v_q1-bG4_Xl9s1nfLnRV8rQATVo0bbuipuyw011VcZ23kqauedv1DSA0BFqWvIeyNtBRCcD7spdSaC7EZfHp5DsNPqr5M6MSvG5hJWRdZcbNiWE87tUU7IjhqDxa9QTkxRWGZPVASpZamgo5Qa8rnQPJpjOmq2oQmnrQ2evLPC34uwPFpEYbNQ0DOvKHqMq2bGXFVxXP1M__UP8frjqxdPAxBupfAgJXj_14VqnHfqi5H1n2cTY_dCOZF9FzIcQfhDu7ZA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069183564</pqid></control><display><type>article</type><title>Aedes aegypti CCEae3A carboxylase expression confers carbamate, organophosphate and limited pyrethroid resistance in a model transgenic mosquito</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS)</source><creator>Poulton, Beth C ; Colman, Fraser ; Anthousi, Amalia ; Sattelle, David B ; Lycett, Gareth J</creator><creatorcontrib>Poulton, Beth C ; Colman, Fraser ; Anthousi, Amalia ; Sattelle, David B ; Lycett, Gareth J</creatorcontrib><description>Insecticide resistance is a serious threat to our ability to control mosquito vectors which transmit pathogens including malaria parasites and arboviruses. Understanding the underlying mechanisms is an essential first step in tackling the challenges presented by resistance. This study aimed to functionally characterise the carboxylesterase, CCEae3A, the elevated expression of which has been implicated in temephos resistance in Aedes aegypti and Aedes albopictus larvae. Using our GAL4/UAS expression system, already established in insecticide-sensitive Anopheles gambiae mosquitoes, we produced transgenic An. gambiae mosquitoes that express an Ae. aegypti CCEae3A ubiquitously. This new transgenic line permits examination of CCEae3A expression in a background in which there is not a clear orthologue in Vectorbase and allows comparison with existing An. gambiae GAL4-UAS lines. Insecticide resistance profiling of these transgenic An. gambiae larvae indicated significant increases in resistance ratio for three organophosphate insecticides, temephos (6), chloropyriphos (6.6) and fenthion (3.2) when compared to the parental strain. Cross resistance to adulticides from three major insecticide classes: organophosphates (malathion, fenitrothion and pirimiphos methyl), carbamates (bendiocarb and propoxur) and pyrethroid (alpha-cypermethrin) was also detected. Resistance to certain organophosphates and carbamates validates conclusions drawn from previous expression and phenotypic data. However, detection of resistance to pirimiphos methyl and alphacypermethrin has not previously been formally associated with CCEae3A, despite occurring in Ae. aegypti strains where this gene was upregulated. Our findings highlight the importance of characterising individual resistance mechanisms, thereby ensuring accurate information is used to guide future vector control strategies.</description><identifier>ISSN: 1935-2735</identifier><identifier>ISSN: 1935-2727</identifier><identifier>EISSN: 1935-2735</identifier><identifier>DOI: 10.1371/journal.pntd.0011595</identifier><identifier>PMID: 38377131</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adulticides ; Aedes - genetics ; Aedes aegypti ; Animals ; Animals, Genetically Modified ; Anopheles gambiae ; Aquatic insects ; Candidates ; Carbamate pesticides ; Carbamates ; Carbamates (tradename) ; Carboxylesterase ; Culicidae ; Cypermethrin ; Cytochrome ; Enzymes ; Fenitrothion ; Fenthion ; Genomes ; Human diseases ; Insecticide resistance ; Insecticides ; Insecticides - pharmacology ; Larvae ; Malaria ; Malathion ; Metabolism ; Mosquitoes ; Organophosphates ; Organophosphates - pharmacology ; Organothiophosphorus Compounds ; Parasites ; Pest control ; Pesticide resistance ; Pesticides ; Pyrethrins ; Pyrethroids ; Resistance mechanisms ; Temefos - pharmacology ; Toxicity ; Vector-borne diseases ; Vectors</subject><ispartof>PLoS neglected tropical diseases, 2024-02, Vol.18 (2), p.e0011595</ispartof><rights>Copyright: © 2024 Poulton et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>2024 Poulton et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Poulton et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c420t-1cec37998e72babcb440c8375d6609bf71a17e1c520f126d1be2110f2f553c033</cites><orcidid>0000-0002-2422-053X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.plos.org/plosone/article/file?id=10.1371/journal.pntd.0011595&type=printable$$EPDF$$P50$$Gplos$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.plos.org/plosone/article?id=10.1371/journal.pntd.0011595$$EHTML$$P50$$Gplos$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,2915,23845,27901,27902,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38377131$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Poulton, Beth C</creatorcontrib><creatorcontrib>Colman, Fraser</creatorcontrib><creatorcontrib>Anthousi, Amalia</creatorcontrib><creatorcontrib>Sattelle, David B</creatorcontrib><creatorcontrib>Lycett, Gareth J</creatorcontrib><title>Aedes aegypti CCEae3A carboxylase expression confers carbamate, organophosphate and limited pyrethroid resistance in a model transgenic mosquito</title><title>PLoS neglected tropical diseases</title><addtitle>PLoS Negl Trop Dis</addtitle><description>Insecticide resistance is a serious threat to our ability to control mosquito vectors which transmit pathogens including malaria parasites and arboviruses. Understanding the underlying mechanisms is an essential first step in tackling the challenges presented by resistance. This study aimed to functionally characterise the carboxylesterase, CCEae3A, the elevated expression of which has been implicated in temephos resistance in Aedes aegypti and Aedes albopictus larvae. Using our GAL4/UAS expression system, already established in insecticide-sensitive Anopheles gambiae mosquitoes, we produced transgenic An. gambiae mosquitoes that express an Ae. aegypti CCEae3A ubiquitously. This new transgenic line permits examination of CCEae3A expression in a background in which there is not a clear orthologue in Vectorbase and allows comparison with existing An. gambiae GAL4-UAS lines. Insecticide resistance profiling of these transgenic An. gambiae larvae indicated significant increases in resistance ratio for three organophosphate insecticides, temephos (6), chloropyriphos (6.6) and fenthion (3.2) when compared to the parental strain. Cross resistance to adulticides from three major insecticide classes: organophosphates (malathion, fenitrothion and pirimiphos methyl), carbamates (bendiocarb and propoxur) and pyrethroid (alpha-cypermethrin) was also detected. Resistance to certain organophosphates and carbamates validates conclusions drawn from previous expression and phenotypic data. However, detection of resistance to pirimiphos methyl and alphacypermethrin has not previously been formally associated with CCEae3A, despite occurring in Ae. aegypti strains where this gene was upregulated. Our findings highlight the importance of characterising individual resistance mechanisms, thereby ensuring accurate information is used to guide future vector control strategies.</description><subject>Adulticides</subject><subject>Aedes - genetics</subject><subject>Aedes aegypti</subject><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Anopheles gambiae</subject><subject>Aquatic insects</subject><subject>Candidates</subject><subject>Carbamate pesticides</subject><subject>Carbamates</subject><subject>Carbamates (tradename)</subject><subject>Carboxylesterase</subject><subject>Culicidae</subject><subject>Cypermethrin</subject><subject>Cytochrome</subject><subject>Enzymes</subject><subject>Fenitrothion</subject><subject>Fenthion</subject><subject>Genomes</subject><subject>Human diseases</subject><subject>Insecticide resistance</subject><subject>Insecticides</subject><subject>Insecticides - pharmacology</subject><subject>Larvae</subject><subject>Malaria</subject><subject>Malathion</subject><subject>Metabolism</subject><subject>Mosquitoes</subject><subject>Organophosphates</subject><subject>Organophosphates - pharmacology</subject><subject>Organothiophosphorus Compounds</subject><subject>Parasites</subject><subject>Pest control</subject><subject>Pesticide resistance</subject><subject>Pesticides</subject><subject>Pyrethrins</subject><subject>Pyrethroids</subject><subject>Resistance mechanisms</subject><subject>Temefos - pharmacology</subject><subject>Toxicity</subject><subject>Vector-borne diseases</subject><subject>Vectors</subject><issn>1935-2735</issn><issn>1935-2727</issn><issn>1935-2735</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1v1DAUjBCIfsA_QGCJCwd28YvjZHNcrUqpVIkLnK0X-2XXq8ROba_U_Rf9ybjdtEKIk63xzLx51hTFB-BLEA182_tDcDgsJ5fMknMA2cpXxTm0Qi7KRsjXf93PiosY95xnygreFmdiJZoGBJwXD2syFBnS9jglyzabKySxZhpD5--PA0ZidD8FitF6x7R3PYX49IwjJvrKfNii89POx2mXAYbOsMGONpFh0zFQ2gVvDcsONiZ0mph1DNnoDQ0sBXRxS87qDMS7g03-XfGmxyHS-_m8LH5_v_q1-bG4_Xl9s1nfLnRV8rQATVo0bbuipuyw011VcZ23kqauedv1DSA0BFqWvIeyNtBRCcD7spdSaC7EZfHp5DsNPqr5M6MSvG5hJWRdZcbNiWE87tUU7IjhqDxa9QTkxRWGZPVASpZamgo5Qa8rnQPJpjOmq2oQmnrQ2evLPC34uwPFpEYbNQ0DOvKHqMq2bGXFVxXP1M__UP8frjqxdPAxBupfAgJXj_14VqnHfqi5H1n2cTY_dCOZF9FzIcQfhDu7ZA</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Poulton, Beth C</creator><creator>Colman, Fraser</creator><creator>Anthousi, Amalia</creator><creator>Sattelle, David B</creator><creator>Lycett, Gareth J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SS</scope><scope>7T2</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>K9.</scope><scope>L.G</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2422-053X</orcidid></search><sort><creationdate>20240201</creationdate><title>Aedes aegypti CCEae3A carboxylase expression confers carbamate, organophosphate and limited pyrethroid resistance in a model transgenic mosquito</title><author>Poulton, Beth C ; Colman, Fraser ; Anthousi, Amalia ; Sattelle, David B ; Lycett, Gareth J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-1cec37998e72babcb440c8375d6609bf71a17e1c520f126d1be2110f2f553c033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adulticides</topic><topic>Aedes - genetics</topic><topic>Aedes aegypti</topic><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Anopheles gambiae</topic><topic>Aquatic insects</topic><topic>Candidates</topic><topic>Carbamate pesticides</topic><topic>Carbamates</topic><topic>Carbamates (tradename)</topic><topic>Carboxylesterase</topic><topic>Culicidae</topic><topic>Cypermethrin</topic><topic>Cytochrome</topic><topic>Enzymes</topic><topic>Fenitrothion</topic><topic>Fenthion</topic><topic>Genomes</topic><topic>Human diseases</topic><topic>Insecticide resistance</topic><topic>Insecticides</topic><topic>Insecticides - pharmacology</topic><topic>Larvae</topic><topic>Malaria</topic><topic>Malathion</topic><topic>Metabolism</topic><topic>Mosquitoes</topic><topic>Organophosphates</topic><topic>Organophosphates - pharmacology</topic><topic>Organothiophosphorus Compounds</topic><topic>Parasites</topic><topic>Pest control</topic><topic>Pesticide resistance</topic><topic>Pesticides</topic><topic>Pyrethrins</topic><topic>Pyrethroids</topic><topic>Resistance mechanisms</topic><topic>Temefos - pharmacology</topic><topic>Toxicity</topic><topic>Vector-borne diseases</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poulton, Beth C</creatorcontrib><creatorcontrib>Colman, Fraser</creatorcontrib><creatorcontrib>Anthousi, Amalia</creatorcontrib><creatorcontrib>Sattelle, David B</creatorcontrib><creatorcontrib>Lycett, Gareth J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS neglected tropical diseases</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poulton, Beth C</au><au>Colman, Fraser</au><au>Anthousi, Amalia</au><au>Sattelle, David B</au><au>Lycett, Gareth J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aedes aegypti CCEae3A carboxylase expression confers carbamate, organophosphate and limited pyrethroid resistance in a model transgenic mosquito</atitle><jtitle>PLoS neglected tropical diseases</jtitle><addtitle>PLoS Negl Trop Dis</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>18</volume><issue>2</issue><spage>e0011595</spage><pages>e0011595-</pages><issn>1935-2735</issn><issn>1935-2727</issn><eissn>1935-2735</eissn><abstract>Insecticide resistance is a serious threat to our ability to control mosquito vectors which transmit pathogens including malaria parasites and arboviruses. Understanding the underlying mechanisms is an essential first step in tackling the challenges presented by resistance. This study aimed to functionally characterise the carboxylesterase, CCEae3A, the elevated expression of which has been implicated in temephos resistance in Aedes aegypti and Aedes albopictus larvae. Using our GAL4/UAS expression system, already established in insecticide-sensitive Anopheles gambiae mosquitoes, we produced transgenic An. gambiae mosquitoes that express an Ae. aegypti CCEae3A ubiquitously. This new transgenic line permits examination of CCEae3A expression in a background in which there is not a clear orthologue in Vectorbase and allows comparison with existing An. gambiae GAL4-UAS lines. Insecticide resistance profiling of these transgenic An. gambiae larvae indicated significant increases in resistance ratio for three organophosphate insecticides, temephos (6), chloropyriphos (6.6) and fenthion (3.2) when compared to the parental strain. Cross resistance to adulticides from three major insecticide classes: organophosphates (malathion, fenitrothion and pirimiphos methyl), carbamates (bendiocarb and propoxur) and pyrethroid (alpha-cypermethrin) was also detected. Resistance to certain organophosphates and carbamates validates conclusions drawn from previous expression and phenotypic data. However, detection of resistance to pirimiphos methyl and alphacypermethrin has not previously been formally associated with CCEae3A, despite occurring in Ae. aegypti strains where this gene was upregulated. Our findings highlight the importance of characterising individual resistance mechanisms, thereby ensuring accurate information is used to guide future vector control strategies.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>38377131</pmid><doi>10.1371/journal.pntd.0011595</doi><orcidid>https://orcid.org/0000-0002-2422-053X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1935-2735 |
ispartof | PLoS neglected tropical diseases, 2024-02, Vol.18 (2), p.e0011595 |
issn | 1935-2735 1935-2727 1935-2735 |
language | eng |
recordid | cdi_plos_journals_3069183564 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access; Public Library of Science (PLoS) |
subjects | Adulticides Aedes - genetics Aedes aegypti Animals Animals, Genetically Modified Anopheles gambiae Aquatic insects Candidates Carbamate pesticides Carbamates Carbamates (tradename) Carboxylesterase Culicidae Cypermethrin Cytochrome Enzymes Fenitrothion Fenthion Genomes Human diseases Insecticide resistance Insecticides Insecticides - pharmacology Larvae Malaria Malathion Metabolism Mosquitoes Organophosphates Organophosphates - pharmacology Organothiophosphorus Compounds Parasites Pest control Pesticide resistance Pesticides Pyrethrins Pyrethroids Resistance mechanisms Temefos - pharmacology Toxicity Vector-borne diseases Vectors |
title | Aedes aegypti CCEae3A carboxylase expression confers carbamate, organophosphate and limited pyrethroid resistance in a model transgenic mosquito |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A22%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aedes%20aegypti%20CCEae3A%20carboxylase%20expression%20confers%20carbamate,%20organophosphate%20and%20limited%20pyrethroid%20resistance%20in%20a%20model%20transgenic%20mosquito&rft.jtitle=PLoS%20neglected%20tropical%20diseases&rft.au=Poulton,%20Beth%20C&rft.date=2024-02-01&rft.volume=18&rft.issue=2&rft.spage=e0011595&rft.pages=e0011595-&rft.issn=1935-2735&rft.eissn=1935-2735&rft_id=info:doi/10.1371/journal.pntd.0011595&rft_dat=%3Cproquest_plos_%3E2929540840%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069183564&rft_id=info:pmid/38377131&rft_doaj_id=oai_doaj_org_article_52c5d4a0e1fc4c2ba57bddb4613cef1c&rfr_iscdi=true |