Aedes aegypti CCEae3A carboxylase expression confers carbamate, organophosphate and limited pyrethroid resistance in a model transgenic mosquito

Insecticide resistance is a serious threat to our ability to control mosquito vectors which transmit pathogens including malaria parasites and arboviruses. Understanding the underlying mechanisms is an essential first step in tackling the challenges presented by resistance. This study aimed to funct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS neglected tropical diseases 2024-02, Vol.18 (2), p.e0011595
Hauptverfasser: Poulton, Beth C, Colman, Fraser, Anthousi, Amalia, Sattelle, David B, Lycett, Gareth J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page e0011595
container_title PLoS neglected tropical diseases
container_volume 18
creator Poulton, Beth C
Colman, Fraser
Anthousi, Amalia
Sattelle, David B
Lycett, Gareth J
description Insecticide resistance is a serious threat to our ability to control mosquito vectors which transmit pathogens including malaria parasites and arboviruses. Understanding the underlying mechanisms is an essential first step in tackling the challenges presented by resistance. This study aimed to functionally characterise the carboxylesterase, CCEae3A, the elevated expression of which has been implicated in temephos resistance in Aedes aegypti and Aedes albopictus larvae. Using our GAL4/UAS expression system, already established in insecticide-sensitive Anopheles gambiae mosquitoes, we produced transgenic An. gambiae mosquitoes that express an Ae. aegypti CCEae3A ubiquitously. This new transgenic line permits examination of CCEae3A expression in a background in which there is not a clear orthologue in Vectorbase and allows comparison with existing An. gambiae GAL4-UAS lines. Insecticide resistance profiling of these transgenic An. gambiae larvae indicated significant increases in resistance ratio for three organophosphate insecticides, temephos (6), chloropyriphos (6.6) and fenthion (3.2) when compared to the parental strain. Cross resistance to adulticides from three major insecticide classes: organophosphates (malathion, fenitrothion and pirimiphos methyl), carbamates (bendiocarb and propoxur) and pyrethroid (alpha-cypermethrin) was also detected. Resistance to certain organophosphates and carbamates validates conclusions drawn from previous expression and phenotypic data. However, detection of resistance to pirimiphos methyl and alphacypermethrin has not previously been formally associated with CCEae3A, despite occurring in Ae. aegypti strains where this gene was upregulated. Our findings highlight the importance of characterising individual resistance mechanisms, thereby ensuring accurate information is used to guide future vector control strategies.
doi_str_mv 10.1371/journal.pntd.0011595
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_3069183564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_52c5d4a0e1fc4c2ba57bddb4613cef1c</doaj_id><sourcerecordid>2929540840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-1cec37998e72babcb440c8375d6609bf71a17e1c520f126d1be2110f2f553c033</originalsourceid><addsrcrecordid>eNptUk1v1DAUjBCIfsA_QGCJCwd28YvjZHNcrUqpVIkLnK0X-2XXq8ROba_U_Rf9ybjdtEKIk63xzLx51hTFB-BLEA182_tDcDgsJ5fMknMA2cpXxTm0Qi7KRsjXf93PiosY95xnygreFmdiJZoGBJwXD2syFBnS9jglyzabKySxZhpD5--PA0ZidD8FitF6x7R3PYX49IwjJvrKfNii89POx2mXAYbOsMGONpFh0zFQ2gVvDcsONiZ0mph1DNnoDQ0sBXRxS87qDMS7g03-XfGmxyHS-_m8LH5_v_q1-bG4_Xl9s1nfLnRV8rQATVo0bbuipuyw011VcZ23kqauedv1DSA0BFqWvIeyNtBRCcD7spdSaC7EZfHp5DsNPqr5M6MSvG5hJWRdZcbNiWE87tUU7IjhqDxa9QTkxRWGZPVASpZamgo5Qa8rnQPJpjOmq2oQmnrQ2evLPC34uwPFpEYbNQ0DOvKHqMq2bGXFVxXP1M__UP8frjqxdPAxBupfAgJXj_14VqnHfqi5H1n2cTY_dCOZF9FzIcQfhDu7ZA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069183564</pqid></control><display><type>article</type><title>Aedes aegypti CCEae3A carboxylase expression confers carbamate, organophosphate and limited pyrethroid resistance in a model transgenic mosquito</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS)</source><creator>Poulton, Beth C ; Colman, Fraser ; Anthousi, Amalia ; Sattelle, David B ; Lycett, Gareth J</creator><creatorcontrib>Poulton, Beth C ; Colman, Fraser ; Anthousi, Amalia ; Sattelle, David B ; Lycett, Gareth J</creatorcontrib><description>Insecticide resistance is a serious threat to our ability to control mosquito vectors which transmit pathogens including malaria parasites and arboviruses. Understanding the underlying mechanisms is an essential first step in tackling the challenges presented by resistance. This study aimed to functionally characterise the carboxylesterase, CCEae3A, the elevated expression of which has been implicated in temephos resistance in Aedes aegypti and Aedes albopictus larvae. Using our GAL4/UAS expression system, already established in insecticide-sensitive Anopheles gambiae mosquitoes, we produced transgenic An. gambiae mosquitoes that express an Ae. aegypti CCEae3A ubiquitously. This new transgenic line permits examination of CCEae3A expression in a background in which there is not a clear orthologue in Vectorbase and allows comparison with existing An. gambiae GAL4-UAS lines. Insecticide resistance profiling of these transgenic An. gambiae larvae indicated significant increases in resistance ratio for three organophosphate insecticides, temephos (6), chloropyriphos (6.6) and fenthion (3.2) when compared to the parental strain. Cross resistance to adulticides from three major insecticide classes: organophosphates (malathion, fenitrothion and pirimiphos methyl), carbamates (bendiocarb and propoxur) and pyrethroid (alpha-cypermethrin) was also detected. Resistance to certain organophosphates and carbamates validates conclusions drawn from previous expression and phenotypic data. However, detection of resistance to pirimiphos methyl and alphacypermethrin has not previously been formally associated with CCEae3A, despite occurring in Ae. aegypti strains where this gene was upregulated. Our findings highlight the importance of characterising individual resistance mechanisms, thereby ensuring accurate information is used to guide future vector control strategies.</description><identifier>ISSN: 1935-2735</identifier><identifier>ISSN: 1935-2727</identifier><identifier>EISSN: 1935-2735</identifier><identifier>DOI: 10.1371/journal.pntd.0011595</identifier><identifier>PMID: 38377131</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adulticides ; Aedes - genetics ; Aedes aegypti ; Animals ; Animals, Genetically Modified ; Anopheles gambiae ; Aquatic insects ; Candidates ; Carbamate pesticides ; Carbamates ; Carbamates (tradename) ; Carboxylesterase ; Culicidae ; Cypermethrin ; Cytochrome ; Enzymes ; Fenitrothion ; Fenthion ; Genomes ; Human diseases ; Insecticide resistance ; Insecticides ; Insecticides - pharmacology ; Larvae ; Malaria ; Malathion ; Metabolism ; Mosquitoes ; Organophosphates ; Organophosphates - pharmacology ; Organothiophosphorus Compounds ; Parasites ; Pest control ; Pesticide resistance ; Pesticides ; Pyrethrins ; Pyrethroids ; Resistance mechanisms ; Temefos - pharmacology ; Toxicity ; Vector-borne diseases ; Vectors</subject><ispartof>PLoS neglected tropical diseases, 2024-02, Vol.18 (2), p.e0011595</ispartof><rights>Copyright: © 2024 Poulton et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>2024 Poulton et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Poulton et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c420t-1cec37998e72babcb440c8375d6609bf71a17e1c520f126d1be2110f2f553c033</cites><orcidid>0000-0002-2422-053X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.plos.org/plosone/article/file?id=10.1371/journal.pntd.0011595&amp;type=printable$$EPDF$$P50$$Gplos$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.plos.org/plosone/article?id=10.1371/journal.pntd.0011595$$EHTML$$P50$$Gplos$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,2915,23845,27901,27902,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38377131$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Poulton, Beth C</creatorcontrib><creatorcontrib>Colman, Fraser</creatorcontrib><creatorcontrib>Anthousi, Amalia</creatorcontrib><creatorcontrib>Sattelle, David B</creatorcontrib><creatorcontrib>Lycett, Gareth J</creatorcontrib><title>Aedes aegypti CCEae3A carboxylase expression confers carbamate, organophosphate and limited pyrethroid resistance in a model transgenic mosquito</title><title>PLoS neglected tropical diseases</title><addtitle>PLoS Negl Trop Dis</addtitle><description>Insecticide resistance is a serious threat to our ability to control mosquito vectors which transmit pathogens including malaria parasites and arboviruses. Understanding the underlying mechanisms is an essential first step in tackling the challenges presented by resistance. This study aimed to functionally characterise the carboxylesterase, CCEae3A, the elevated expression of which has been implicated in temephos resistance in Aedes aegypti and Aedes albopictus larvae. Using our GAL4/UAS expression system, already established in insecticide-sensitive Anopheles gambiae mosquitoes, we produced transgenic An. gambiae mosquitoes that express an Ae. aegypti CCEae3A ubiquitously. This new transgenic line permits examination of CCEae3A expression in a background in which there is not a clear orthologue in Vectorbase and allows comparison with existing An. gambiae GAL4-UAS lines. Insecticide resistance profiling of these transgenic An. gambiae larvae indicated significant increases in resistance ratio for three organophosphate insecticides, temephos (6), chloropyriphos (6.6) and fenthion (3.2) when compared to the parental strain. Cross resistance to adulticides from three major insecticide classes: organophosphates (malathion, fenitrothion and pirimiphos methyl), carbamates (bendiocarb and propoxur) and pyrethroid (alpha-cypermethrin) was also detected. Resistance to certain organophosphates and carbamates validates conclusions drawn from previous expression and phenotypic data. However, detection of resistance to pirimiphos methyl and alphacypermethrin has not previously been formally associated with CCEae3A, despite occurring in Ae. aegypti strains where this gene was upregulated. Our findings highlight the importance of characterising individual resistance mechanisms, thereby ensuring accurate information is used to guide future vector control strategies.</description><subject>Adulticides</subject><subject>Aedes - genetics</subject><subject>Aedes aegypti</subject><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Anopheles gambiae</subject><subject>Aquatic insects</subject><subject>Candidates</subject><subject>Carbamate pesticides</subject><subject>Carbamates</subject><subject>Carbamates (tradename)</subject><subject>Carboxylesterase</subject><subject>Culicidae</subject><subject>Cypermethrin</subject><subject>Cytochrome</subject><subject>Enzymes</subject><subject>Fenitrothion</subject><subject>Fenthion</subject><subject>Genomes</subject><subject>Human diseases</subject><subject>Insecticide resistance</subject><subject>Insecticides</subject><subject>Insecticides - pharmacology</subject><subject>Larvae</subject><subject>Malaria</subject><subject>Malathion</subject><subject>Metabolism</subject><subject>Mosquitoes</subject><subject>Organophosphates</subject><subject>Organophosphates - pharmacology</subject><subject>Organothiophosphorus Compounds</subject><subject>Parasites</subject><subject>Pest control</subject><subject>Pesticide resistance</subject><subject>Pesticides</subject><subject>Pyrethrins</subject><subject>Pyrethroids</subject><subject>Resistance mechanisms</subject><subject>Temefos - pharmacology</subject><subject>Toxicity</subject><subject>Vector-borne diseases</subject><subject>Vectors</subject><issn>1935-2735</issn><issn>1935-2727</issn><issn>1935-2735</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1v1DAUjBCIfsA_QGCJCwd28YvjZHNcrUqpVIkLnK0X-2XXq8ROba_U_Rf9ybjdtEKIk63xzLx51hTFB-BLEA182_tDcDgsJ5fMknMA2cpXxTm0Qi7KRsjXf93PiosY95xnygreFmdiJZoGBJwXD2syFBnS9jglyzabKySxZhpD5--PA0ZidD8FitF6x7R3PYX49IwjJvrKfNii89POx2mXAYbOsMGONpFh0zFQ2gVvDcsONiZ0mph1DNnoDQ0sBXRxS87qDMS7g03-XfGmxyHS-_m8LH5_v_q1-bG4_Xl9s1nfLnRV8rQATVo0bbuipuyw011VcZ23kqauedv1DSA0BFqWvIeyNtBRCcD7spdSaC7EZfHp5DsNPqr5M6MSvG5hJWRdZcbNiWE87tUU7IjhqDxa9QTkxRWGZPVASpZamgo5Qa8rnQPJpjOmq2oQmnrQ2evLPC34uwPFpEYbNQ0DOvKHqMq2bGXFVxXP1M__UP8frjqxdPAxBupfAgJXj_14VqnHfqi5H1n2cTY_dCOZF9FzIcQfhDu7ZA</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Poulton, Beth C</creator><creator>Colman, Fraser</creator><creator>Anthousi, Amalia</creator><creator>Sattelle, David B</creator><creator>Lycett, Gareth J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SS</scope><scope>7T2</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>K9.</scope><scope>L.G</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2422-053X</orcidid></search><sort><creationdate>20240201</creationdate><title>Aedes aegypti CCEae3A carboxylase expression confers carbamate, organophosphate and limited pyrethroid resistance in a model transgenic mosquito</title><author>Poulton, Beth C ; Colman, Fraser ; Anthousi, Amalia ; Sattelle, David B ; Lycett, Gareth J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-1cec37998e72babcb440c8375d6609bf71a17e1c520f126d1be2110f2f553c033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adulticides</topic><topic>Aedes - genetics</topic><topic>Aedes aegypti</topic><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Anopheles gambiae</topic><topic>Aquatic insects</topic><topic>Candidates</topic><topic>Carbamate pesticides</topic><topic>Carbamates</topic><topic>Carbamates (tradename)</topic><topic>Carboxylesterase</topic><topic>Culicidae</topic><topic>Cypermethrin</topic><topic>Cytochrome</topic><topic>Enzymes</topic><topic>Fenitrothion</topic><topic>Fenthion</topic><topic>Genomes</topic><topic>Human diseases</topic><topic>Insecticide resistance</topic><topic>Insecticides</topic><topic>Insecticides - pharmacology</topic><topic>Larvae</topic><topic>Malaria</topic><topic>Malathion</topic><topic>Metabolism</topic><topic>Mosquitoes</topic><topic>Organophosphates</topic><topic>Organophosphates - pharmacology</topic><topic>Organothiophosphorus Compounds</topic><topic>Parasites</topic><topic>Pest control</topic><topic>Pesticide resistance</topic><topic>Pesticides</topic><topic>Pyrethrins</topic><topic>Pyrethroids</topic><topic>Resistance mechanisms</topic><topic>Temefos - pharmacology</topic><topic>Toxicity</topic><topic>Vector-borne diseases</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poulton, Beth C</creatorcontrib><creatorcontrib>Colman, Fraser</creatorcontrib><creatorcontrib>Anthousi, Amalia</creatorcontrib><creatorcontrib>Sattelle, David B</creatorcontrib><creatorcontrib>Lycett, Gareth J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS neglected tropical diseases</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poulton, Beth C</au><au>Colman, Fraser</au><au>Anthousi, Amalia</au><au>Sattelle, David B</au><au>Lycett, Gareth J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aedes aegypti CCEae3A carboxylase expression confers carbamate, organophosphate and limited pyrethroid resistance in a model transgenic mosquito</atitle><jtitle>PLoS neglected tropical diseases</jtitle><addtitle>PLoS Negl Trop Dis</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>18</volume><issue>2</issue><spage>e0011595</spage><pages>e0011595-</pages><issn>1935-2735</issn><issn>1935-2727</issn><eissn>1935-2735</eissn><abstract>Insecticide resistance is a serious threat to our ability to control mosquito vectors which transmit pathogens including malaria parasites and arboviruses. Understanding the underlying mechanisms is an essential first step in tackling the challenges presented by resistance. This study aimed to functionally characterise the carboxylesterase, CCEae3A, the elevated expression of which has been implicated in temephos resistance in Aedes aegypti and Aedes albopictus larvae. Using our GAL4/UAS expression system, already established in insecticide-sensitive Anopheles gambiae mosquitoes, we produced transgenic An. gambiae mosquitoes that express an Ae. aegypti CCEae3A ubiquitously. This new transgenic line permits examination of CCEae3A expression in a background in which there is not a clear orthologue in Vectorbase and allows comparison with existing An. gambiae GAL4-UAS lines. Insecticide resistance profiling of these transgenic An. gambiae larvae indicated significant increases in resistance ratio for three organophosphate insecticides, temephos (6), chloropyriphos (6.6) and fenthion (3.2) when compared to the parental strain. Cross resistance to adulticides from three major insecticide classes: organophosphates (malathion, fenitrothion and pirimiphos methyl), carbamates (bendiocarb and propoxur) and pyrethroid (alpha-cypermethrin) was also detected. Resistance to certain organophosphates and carbamates validates conclusions drawn from previous expression and phenotypic data. However, detection of resistance to pirimiphos methyl and alphacypermethrin has not previously been formally associated with CCEae3A, despite occurring in Ae. aegypti strains where this gene was upregulated. Our findings highlight the importance of characterising individual resistance mechanisms, thereby ensuring accurate information is used to guide future vector control strategies.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>38377131</pmid><doi>10.1371/journal.pntd.0011595</doi><orcidid>https://orcid.org/0000-0002-2422-053X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1935-2735
ispartof PLoS neglected tropical diseases, 2024-02, Vol.18 (2), p.e0011595
issn 1935-2735
1935-2727
1935-2735
language eng
recordid cdi_plos_journals_3069183564
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access; Public Library of Science (PLoS)
subjects Adulticides
Aedes - genetics
Aedes aegypti
Animals
Animals, Genetically Modified
Anopheles gambiae
Aquatic insects
Candidates
Carbamate pesticides
Carbamates
Carbamates (tradename)
Carboxylesterase
Culicidae
Cypermethrin
Cytochrome
Enzymes
Fenitrothion
Fenthion
Genomes
Human diseases
Insecticide resistance
Insecticides
Insecticides - pharmacology
Larvae
Malaria
Malathion
Metabolism
Mosquitoes
Organophosphates
Organophosphates - pharmacology
Organothiophosphorus Compounds
Parasites
Pest control
Pesticide resistance
Pesticides
Pyrethrins
Pyrethroids
Resistance mechanisms
Temefos - pharmacology
Toxicity
Vector-borne diseases
Vectors
title Aedes aegypti CCEae3A carboxylase expression confers carbamate, organophosphate and limited pyrethroid resistance in a model transgenic mosquito
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A22%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aedes%20aegypti%20CCEae3A%20carboxylase%20expression%20confers%20carbamate,%20organophosphate%20and%20limited%20pyrethroid%20resistance%20in%20a%20model%20transgenic%20mosquito&rft.jtitle=PLoS%20neglected%20tropical%20diseases&rft.au=Poulton,%20Beth%20C&rft.date=2024-02-01&rft.volume=18&rft.issue=2&rft.spage=e0011595&rft.pages=e0011595-&rft.issn=1935-2735&rft.eissn=1935-2735&rft_id=info:doi/10.1371/journal.pntd.0011595&rft_dat=%3Cproquest_plos_%3E2929540840%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069183564&rft_id=info:pmid/38377131&rft_doaj_id=oai_doaj_org_article_52c5d4a0e1fc4c2ba57bddb4613cef1c&rfr_iscdi=true