Neutralizing monoclonal antibodies against the Gc fusion loop region of Crimean-Congo hemorrhagic fever virus

Crimean-Congo hemorrhagic fever virus (CCHFV) is a highly pathogenic tick-borne virus, prevalent in more than 30 countries worldwide. Human infection by this virus leads to severe illness, with an average case fatality of 40%. There is currently no approved vaccine or drug to treat the disease. Neut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS pathogens 2024-02, Vol.20 (2), p.e1011948-e1011948
Hauptverfasser: Li, Liushuai, Chong, Tingting, Peng, Lu, Liu, Yajie, Rao, Guibo, Fu, Yan, Shu, Yanni, Shen, Jiamei, Xiao, Qinghong, Liu, Jia, Li, Jiang, Deng, Fei, Yan, Bing, Hu, Zhihong, Cao, Sheng, Wang, Manli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1011948
container_issue 2
container_start_page e1011948
container_title PLoS pathogens
container_volume 20
creator Li, Liushuai
Chong, Tingting
Peng, Lu
Liu, Yajie
Rao, Guibo
Fu, Yan
Shu, Yanni
Shen, Jiamei
Xiao, Qinghong
Liu, Jia
Li, Jiang
Deng, Fei
Yan, Bing
Hu, Zhihong
Cao, Sheng
Wang, Manli
description Crimean-Congo hemorrhagic fever virus (CCHFV) is a highly pathogenic tick-borne virus, prevalent in more than 30 countries worldwide. Human infection by this virus leads to severe illness, with an average case fatality of 40%. There is currently no approved vaccine or drug to treat the disease. Neutralizing antibodies are a promising approach to treat virus infectious diseases. This study generated 37 mouse-derived specific monoclonal antibodies against CCHFV Gc subunit. Neutralization assays using pseudotyped virus and authentic CCHFV identified Gc8, Gc13, and Gc35 as neutralizing antibodies. Among them, Gc13 had the highest neutralizing activity and binding affinity with CCHFV Gc. Consistently, Gc13, but not Gc8 or Gc35, showed in vivo protective efficacy (62.5% survival rate) against CCHFV infection in a lethal mouse infection model. Further characterization studies suggested that Gc8 and Gc13 may recognize a similar, linear epitope in domain II of CCHFV Gc, while Gc35 may recognize a different epitope in Gc. Cryo-electron microscopy of Gc-Fab complexes indicated that both Gc8 and Gc13 bind to the conserved fusion loop region and Gc13 had stronger interactions with sGc-trimers. This was supported by the ability of Gc13 to block CCHFV GP-mediated membrane fusion. Overall, this study provides new therapeutic strategies to treat CCHF and new insights into the interaction between antibodies with CCHFV Gc proteins.
doi_str_mv 10.1371/journal.ppat.1011948
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_3069182876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6c9345b7c6af422681cf4963577ef529</doaj_id><sourcerecordid>3069182876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-29657204b9f8b4820fad6b108b803f9cda4929285945aaeb4b552c03109615dd3</originalsourceid><addsrcrecordid>eNptUktv1DAYjBCIlsI_QGCJC5csfj9OqFq1pVIFFzhbjuNkvUrsYCcrwa_Hy6ZVizj5kz0z_mY0VfUWwQ0iAn3axyUFM2ymycwbBBFSVD6rzhFjpBZE0OeP5rPqVc57CCkiiL-szogkECqBz6vxq1vmZAb_24cejDFEO8QiC0yYfRNb7zIwvfEhz2DeOXBjQbdkHwMYYpxAcv1xjh3YJj86E-ptDH0EOzfGlHam9wXvDi6Bg09Lfl296MyQ3Zv1vKh-XF99336p777d3G4v72rLsJhrrDgTGNJGdbKhEsPOtLxBUDYSkk7Z1lCFFZZMUWaMa2jDGLaQIKg4Ym1LLqr3J91piFmvSWVNIFdIYil4QdyeEG00ez2V5U36paPx-u9FTL02afZ2cJpbRShrhOWmoxhziWxHFSdMCNcxrIrW5_W3pRlda104JvpE9OlL8Dvdx4MujjiRnBWFj6tCij8Xl2c9-mzdMJjg4pJ1Mcuh4CWXAv3wD_T_9ugJZVPMObnuYRsE9bE-9yx9rI9e61No7x47eSDd94X8AZFCw88</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069182876</pqid></control><display><type>article</type><title>Neutralizing monoclonal antibodies against the Gc fusion loop region of Crimean-Congo hemorrhagic fever virus</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Li, Liushuai ; Chong, Tingting ; Peng, Lu ; Liu, Yajie ; Rao, Guibo ; Fu, Yan ; Shu, Yanni ; Shen, Jiamei ; Xiao, Qinghong ; Liu, Jia ; Li, Jiang ; Deng, Fei ; Yan, Bing ; Hu, Zhihong ; Cao, Sheng ; Wang, Manli</creator><contributor>Hartman, Amy L.</contributor><creatorcontrib>Li, Liushuai ; Chong, Tingting ; Peng, Lu ; Liu, Yajie ; Rao, Guibo ; Fu, Yan ; Shu, Yanni ; Shen, Jiamei ; Xiao, Qinghong ; Liu, Jia ; Li, Jiang ; Deng, Fei ; Yan, Bing ; Hu, Zhihong ; Cao, Sheng ; Wang, Manli ; Hartman, Amy L.</creatorcontrib><description>Crimean-Congo hemorrhagic fever virus (CCHFV) is a highly pathogenic tick-borne virus, prevalent in more than 30 countries worldwide. Human infection by this virus leads to severe illness, with an average case fatality of 40%. There is currently no approved vaccine or drug to treat the disease. Neutralizing antibodies are a promising approach to treat virus infectious diseases. This study generated 37 mouse-derived specific monoclonal antibodies against CCHFV Gc subunit. Neutralization assays using pseudotyped virus and authentic CCHFV identified Gc8, Gc13, and Gc35 as neutralizing antibodies. Among them, Gc13 had the highest neutralizing activity and binding affinity with CCHFV Gc. Consistently, Gc13, but not Gc8 or Gc35, showed in vivo protective efficacy (62.5% survival rate) against CCHFV infection in a lethal mouse infection model. Further characterization studies suggested that Gc8 and Gc13 may recognize a similar, linear epitope in domain II of CCHFV Gc, while Gc35 may recognize a different epitope in Gc. Cryo-electron microscopy of Gc-Fab complexes indicated that both Gc8 and Gc13 bind to the conserved fusion loop region and Gc13 had stronger interactions with sGc-trimers. This was supported by the ability of Gc13 to block CCHFV GP-mediated membrane fusion. Overall, this study provides new therapeutic strategies to treat CCHF and new insights into the interaction between antibodies with CCHFV Gc proteins.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1011948</identifier><identifier>PMID: 38300972</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Antibodies, Monoclonal ; Antibodies, Neutralizing ; Biology and Life Sciences ; Crimean hemorrhagic fever ; Cryoelectron Microscopy ; Drug dosages ; Electron microscopy ; Epitopes ; Fever ; Glycoproteins ; Hemorrhagic Fever Virus, Crimean-Congo - genetics ; Hemorrhagic Fever, Crimean ; Humans ; Infections ; Infectious diseases ; Medicine and Health Sciences ; Membrane fusion ; Mice ; Monoclonal antibodies ; Neutralization ; Neutralizing ; Physical Sciences ; Proteins ; Research and Analysis Methods ; RNA polymerase ; Spleen ; Survival ; Survival analysis ; Viral infections ; Viruses</subject><ispartof>PLoS pathogens, 2024-02, Vol.20 (2), p.e1011948-e1011948</ispartof><rights>Copyright: © 2024 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>2024 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Li et al 2024 Li et al</rights><rights>2024 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-29657204b9f8b4820fad6b108b803f9cda4929285945aaeb4b552c03109615dd3</citedby><cites>FETCH-LOGICAL-c527t-29657204b9f8b4820fad6b108b803f9cda4929285945aaeb4b552c03109615dd3</cites><orcidid>0000-0001-8701-3530</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10863865/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10863865/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,2098,2917,23849,27907,27908,53774,53776,79351,79352</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38300972$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Hartman, Amy L.</contributor><creatorcontrib>Li, Liushuai</creatorcontrib><creatorcontrib>Chong, Tingting</creatorcontrib><creatorcontrib>Peng, Lu</creatorcontrib><creatorcontrib>Liu, Yajie</creatorcontrib><creatorcontrib>Rao, Guibo</creatorcontrib><creatorcontrib>Fu, Yan</creatorcontrib><creatorcontrib>Shu, Yanni</creatorcontrib><creatorcontrib>Shen, Jiamei</creatorcontrib><creatorcontrib>Xiao, Qinghong</creatorcontrib><creatorcontrib>Liu, Jia</creatorcontrib><creatorcontrib>Li, Jiang</creatorcontrib><creatorcontrib>Deng, Fei</creatorcontrib><creatorcontrib>Yan, Bing</creatorcontrib><creatorcontrib>Hu, Zhihong</creatorcontrib><creatorcontrib>Cao, Sheng</creatorcontrib><creatorcontrib>Wang, Manli</creatorcontrib><title>Neutralizing monoclonal antibodies against the Gc fusion loop region of Crimean-Congo hemorrhagic fever virus</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>Crimean-Congo hemorrhagic fever virus (CCHFV) is a highly pathogenic tick-borne virus, prevalent in more than 30 countries worldwide. Human infection by this virus leads to severe illness, with an average case fatality of 40%. There is currently no approved vaccine or drug to treat the disease. Neutralizing antibodies are a promising approach to treat virus infectious diseases. This study generated 37 mouse-derived specific monoclonal antibodies against CCHFV Gc subunit. Neutralization assays using pseudotyped virus and authentic CCHFV identified Gc8, Gc13, and Gc35 as neutralizing antibodies. Among them, Gc13 had the highest neutralizing activity and binding affinity with CCHFV Gc. Consistently, Gc13, but not Gc8 or Gc35, showed in vivo protective efficacy (62.5% survival rate) against CCHFV infection in a lethal mouse infection model. Further characterization studies suggested that Gc8 and Gc13 may recognize a similar, linear epitope in domain II of CCHFV Gc, while Gc35 may recognize a different epitope in Gc. Cryo-electron microscopy of Gc-Fab complexes indicated that both Gc8 and Gc13 bind to the conserved fusion loop region and Gc13 had stronger interactions with sGc-trimers. This was supported by the ability of Gc13 to block CCHFV GP-mediated membrane fusion. Overall, this study provides new therapeutic strategies to treat CCHF and new insights into the interaction between antibodies with CCHFV Gc proteins.</description><subject>Animals</subject><subject>Antibodies, Monoclonal</subject><subject>Antibodies, Neutralizing</subject><subject>Biology and Life Sciences</subject><subject>Crimean hemorrhagic fever</subject><subject>Cryoelectron Microscopy</subject><subject>Drug dosages</subject><subject>Electron microscopy</subject><subject>Epitopes</subject><subject>Fever</subject><subject>Glycoproteins</subject><subject>Hemorrhagic Fever Virus, Crimean-Congo - genetics</subject><subject>Hemorrhagic Fever, Crimean</subject><subject>Humans</subject><subject>Infections</subject><subject>Infectious diseases</subject><subject>Medicine and Health Sciences</subject><subject>Membrane fusion</subject><subject>Mice</subject><subject>Monoclonal antibodies</subject><subject>Neutralization</subject><subject>Neutralizing</subject><subject>Physical Sciences</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>RNA polymerase</subject><subject>Spleen</subject><subject>Survival</subject><subject>Survival analysis</subject><subject>Viral infections</subject><subject>Viruses</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUktv1DAYjBCIlsI_QGCJC5csfj9OqFq1pVIFFzhbjuNkvUrsYCcrwa_Hy6ZVizj5kz0z_mY0VfUWwQ0iAn3axyUFM2ymycwbBBFSVD6rzhFjpBZE0OeP5rPqVc57CCkiiL-szogkECqBz6vxq1vmZAb_24cejDFEO8QiC0yYfRNb7zIwvfEhz2DeOXBjQbdkHwMYYpxAcv1xjh3YJj86E-ptDH0EOzfGlHam9wXvDi6Bg09Lfl296MyQ3Zv1vKh-XF99336p777d3G4v72rLsJhrrDgTGNJGdbKhEsPOtLxBUDYSkk7Z1lCFFZZMUWaMa2jDGLaQIKg4Ym1LLqr3J91piFmvSWVNIFdIYil4QdyeEG00ez2V5U36paPx-u9FTL02afZ2cJpbRShrhOWmoxhziWxHFSdMCNcxrIrW5_W3pRlda104JvpE9OlL8Dvdx4MujjiRnBWFj6tCij8Xl2c9-mzdMJjg4pJ1Mcuh4CWXAv3wD_T_9ugJZVPMObnuYRsE9bE-9yx9rI9e61No7x47eSDd94X8AZFCw88</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Li, Liushuai</creator><creator>Chong, Tingting</creator><creator>Peng, Lu</creator><creator>Liu, Yajie</creator><creator>Rao, Guibo</creator><creator>Fu, Yan</creator><creator>Shu, Yanni</creator><creator>Shen, Jiamei</creator><creator>Xiao, Qinghong</creator><creator>Liu, Jia</creator><creator>Li, Jiang</creator><creator>Deng, Fei</creator><creator>Yan, Bing</creator><creator>Hu, Zhihong</creator><creator>Cao, Sheng</creator><creator>Wang, Manli</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8701-3530</orcidid></search><sort><creationdate>202402</creationdate><title>Neutralizing monoclonal antibodies against the Gc fusion loop region of Crimean-Congo hemorrhagic fever virus</title><author>Li, Liushuai ; Chong, Tingting ; Peng, Lu ; Liu, Yajie ; Rao, Guibo ; Fu, Yan ; Shu, Yanni ; Shen, Jiamei ; Xiao, Qinghong ; Liu, Jia ; Li, Jiang ; Deng, Fei ; Yan, Bing ; Hu, Zhihong ; Cao, Sheng ; Wang, Manli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-29657204b9f8b4820fad6b108b803f9cda4929285945aaeb4b552c03109615dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Antibodies, Monoclonal</topic><topic>Antibodies, Neutralizing</topic><topic>Biology and Life Sciences</topic><topic>Crimean hemorrhagic fever</topic><topic>Cryoelectron Microscopy</topic><topic>Drug dosages</topic><topic>Electron microscopy</topic><topic>Epitopes</topic><topic>Fever</topic><topic>Glycoproteins</topic><topic>Hemorrhagic Fever Virus, Crimean-Congo - genetics</topic><topic>Hemorrhagic Fever, Crimean</topic><topic>Humans</topic><topic>Infections</topic><topic>Infectious diseases</topic><topic>Medicine and Health Sciences</topic><topic>Membrane fusion</topic><topic>Mice</topic><topic>Monoclonal antibodies</topic><topic>Neutralization</topic><topic>Neutralizing</topic><topic>Physical Sciences</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>RNA polymerase</topic><topic>Spleen</topic><topic>Survival</topic><topic>Survival analysis</topic><topic>Viral infections</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Liushuai</creatorcontrib><creatorcontrib>Chong, Tingting</creatorcontrib><creatorcontrib>Peng, Lu</creatorcontrib><creatorcontrib>Liu, Yajie</creatorcontrib><creatorcontrib>Rao, Guibo</creatorcontrib><creatorcontrib>Fu, Yan</creatorcontrib><creatorcontrib>Shu, Yanni</creatorcontrib><creatorcontrib>Shen, Jiamei</creatorcontrib><creatorcontrib>Xiao, Qinghong</creatorcontrib><creatorcontrib>Liu, Jia</creatorcontrib><creatorcontrib>Li, Jiang</creatorcontrib><creatorcontrib>Deng, Fei</creatorcontrib><creatorcontrib>Yan, Bing</creatorcontrib><creatorcontrib>Hu, Zhihong</creatorcontrib><creatorcontrib>Cao, Sheng</creatorcontrib><creatorcontrib>Wang, Manli</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Liushuai</au><au>Chong, Tingting</au><au>Peng, Lu</au><au>Liu, Yajie</au><au>Rao, Guibo</au><au>Fu, Yan</au><au>Shu, Yanni</au><au>Shen, Jiamei</au><au>Xiao, Qinghong</au><au>Liu, Jia</au><au>Li, Jiang</au><au>Deng, Fei</au><au>Yan, Bing</au><au>Hu, Zhihong</au><au>Cao, Sheng</au><au>Wang, Manli</au><au>Hartman, Amy L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neutralizing monoclonal antibodies against the Gc fusion loop region of Crimean-Congo hemorrhagic fever virus</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2024-02</date><risdate>2024</risdate><volume>20</volume><issue>2</issue><spage>e1011948</spage><epage>e1011948</epage><pages>e1011948-e1011948</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Crimean-Congo hemorrhagic fever virus (CCHFV) is a highly pathogenic tick-borne virus, prevalent in more than 30 countries worldwide. Human infection by this virus leads to severe illness, with an average case fatality of 40%. There is currently no approved vaccine or drug to treat the disease. Neutralizing antibodies are a promising approach to treat virus infectious diseases. This study generated 37 mouse-derived specific monoclonal antibodies against CCHFV Gc subunit. Neutralization assays using pseudotyped virus and authentic CCHFV identified Gc8, Gc13, and Gc35 as neutralizing antibodies. Among them, Gc13 had the highest neutralizing activity and binding affinity with CCHFV Gc. Consistently, Gc13, but not Gc8 or Gc35, showed in vivo protective efficacy (62.5% survival rate) against CCHFV infection in a lethal mouse infection model. Further characterization studies suggested that Gc8 and Gc13 may recognize a similar, linear epitope in domain II of CCHFV Gc, while Gc35 may recognize a different epitope in Gc. Cryo-electron microscopy of Gc-Fab complexes indicated that both Gc8 and Gc13 bind to the conserved fusion loop region and Gc13 had stronger interactions with sGc-trimers. This was supported by the ability of Gc13 to block CCHFV GP-mediated membrane fusion. Overall, this study provides new therapeutic strategies to treat CCHF and new insights into the interaction between antibodies with CCHFV Gc proteins.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>38300972</pmid><doi>10.1371/journal.ppat.1011948</doi><orcidid>https://orcid.org/0000-0001-8701-3530</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7374
ispartof PLoS pathogens, 2024-02, Vol.20 (2), p.e1011948-e1011948
issn 1553-7374
1553-7366
1553-7374
language eng
recordid cdi_plos_journals_3069182876
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Public Library of Science (PLoS); PubMed Central
subjects Animals
Antibodies, Monoclonal
Antibodies, Neutralizing
Biology and Life Sciences
Crimean hemorrhagic fever
Cryoelectron Microscopy
Drug dosages
Electron microscopy
Epitopes
Fever
Glycoproteins
Hemorrhagic Fever Virus, Crimean-Congo - genetics
Hemorrhagic Fever, Crimean
Humans
Infections
Infectious diseases
Medicine and Health Sciences
Membrane fusion
Mice
Monoclonal antibodies
Neutralization
Neutralizing
Physical Sciences
Proteins
Research and Analysis Methods
RNA polymerase
Spleen
Survival
Survival analysis
Viral infections
Viruses
title Neutralizing monoclonal antibodies against the Gc fusion loop region of Crimean-Congo hemorrhagic fever virus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A49%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neutralizing%20monoclonal%20antibodies%20against%20the%20Gc%20fusion%20loop%20region%20of%20Crimean-Congo%20hemorrhagic%20fever%20virus&rft.jtitle=PLoS%20pathogens&rft.au=Li,%20Liushuai&rft.date=2024-02&rft.volume=20&rft.issue=2&rft.spage=e1011948&rft.epage=e1011948&rft.pages=e1011948-e1011948&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1011948&rft_dat=%3Cproquest_plos_%3E3069182876%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069182876&rft_id=info:pmid/38300972&rft_doaj_id=oai_doaj_org_article_6c9345b7c6af422681cf4963577ef529&rfr_iscdi=true