Protective mechanisms of nonneutralizing antiviral antibodies

Antibodies that can bind to viruses but are unable to block infection in cell culture are known as "nonneutralizing antibodies." Such antibodies are nearly universally elicited following viral infection and have been characterized in viral infections such as influenza, rotavirus, cytomegal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS pathogens 2023-10, Vol.19 (10), p.e1011670-e1011670
Hauptverfasser: Chandler, Tawny L, Yang, Agnes, Otero, Claire E, Permar, Sallie R, Caddy, Sarah L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1011670
container_issue 10
container_start_page e1011670
container_title PLoS pathogens
container_volume 19
creator Chandler, Tawny L
Yang, Agnes
Otero, Claire E
Permar, Sallie R
Caddy, Sarah L
description Antibodies that can bind to viruses but are unable to block infection in cell culture are known as "nonneutralizing antibodies." Such antibodies are nearly universally elicited following viral infection and have been characterized in viral infections such as influenza, rotavirus, cytomegalovirus, HIV, and SARS-CoV-2. It has been widely assumed that these nonneutralizing antibodies do not function in a protective way in vivo and therefore are not desirable targets of antiviral interventions; however, increasing evidence now shows this not to be true. Several virus-specific nonneutralizing antibody responses have been correlated with protection in human studies and also shown to significantly reduce virus replication in animal models. The mechanisms by which many of these antibodies function is only now coming to light. While nonneutralizing antibodies cannot prevent viruses entering their host cell, nonneutralizing antibodies work in the extracellular space to recruit effector proteins or cells that can destroy the antibody-virus complex. Other nonneutralizing antibodies exert their effects inside cells, either by blocking the virus life cycle directly or by recruiting the intracellular Fc receptor TRIM21. In this review, we will discuss the multitude of ways in which nonneutralizing antibodies function against a range of viral infections.
doi_str_mv 10.1371/journal.ppat.1011670
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3069180371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A772022366</galeid><doaj_id>oai_doaj_org_article_8d78af934bbc4e9b8bb6474cd79337e7</doaj_id><sourcerecordid>A772022366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c662t-ee0cfd2167d5e9a6ade18332241f5a5c0a27a4324db3cdd94a4a643d2ad163b3</originalsourceid><addsrcrecordid>eNqVkk1v1DAQhiMEoqXwDxCsxAUOu_grdnJAqKr4WKkCBL1bE3uSepXYS5xUwK_H6aZVg3pBPng8fua159Vk2XNKNpQr-nYXxt5Du9nvYdhQQqlU5EF2TPOcrxVX4uGd-Ch7EuOOEEE5lY-zI65UKQtWHmfvvvVhQDO4K1x1aC7Bu9jFVahXPniP49BD6_4436zAJ8il43VUBeswPs0e1dBGfDbvJ9nFxw8XZ5_X518_bc9Oz9dGSjasEYmpLUs_tDmWIMEiLThnTNA6h9wQYAoEZ8JW3FhbChAgBbcMLJW84ifZy4Psvg1Rz41HzYksaUGSGYnYHggbYKf3veug_60DOH2dCH2joR-caVEXVhVQl1xUlRFYVkVVSaGEsarkXKFKWu_n18aqQ2vQTyYsRJc33l3qJlxpSpLfjJZJ4fWs0IefI8ZBdy4abFvwGMaoWaEEk0zS6eOv_kHvb2-mGkgdOF-H9LCZRPWpUowwxqVM1OYeKi2LnTPBY-1SflHwZlGQmAF_DQ2MMertj-__wX5ZsuLAmj7E2GN9ax4lehremyb1NLx6Ht5U9uKu8bdFN9PK_wLR7-rM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069180371</pqid></control><display><type>article</type><title>Protective mechanisms of nonneutralizing antiviral antibodies</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Chandler, Tawny L ; Yang, Agnes ; Otero, Claire E ; Permar, Sallie R ; Caddy, Sarah L</creator><contributor>Evans, Matthew J.</contributor><creatorcontrib>Chandler, Tawny L ; Yang, Agnes ; Otero, Claire E ; Permar, Sallie R ; Caddy, Sarah L ; Evans, Matthew J.</creatorcontrib><description>Antibodies that can bind to viruses but are unable to block infection in cell culture are known as "nonneutralizing antibodies." Such antibodies are nearly universally elicited following viral infection and have been characterized in viral infections such as influenza, rotavirus, cytomegalovirus, HIV, and SARS-CoV-2. It has been widely assumed that these nonneutralizing antibodies do not function in a protective way in vivo and therefore are not desirable targets of antiviral interventions; however, increasing evidence now shows this not to be true. Several virus-specific nonneutralizing antibody responses have been correlated with protection in human studies and also shown to significantly reduce virus replication in animal models. The mechanisms by which many of these antibodies function is only now coming to light. While nonneutralizing antibodies cannot prevent viruses entering their host cell, nonneutralizing antibodies work in the extracellular space to recruit effector proteins or cells that can destroy the antibody-virus complex. Other nonneutralizing antibodies exert their effects inside cells, either by blocking the virus life cycle directly or by recruiting the intracellular Fc receptor TRIM21. In this review, we will discuss the multitude of ways in which nonneutralizing antibodies function against a range of viral infections.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1011670</identifier><identifier>PMID: 37796829</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Animal models ; Animals ; Antibodies ; Antibodies, Neutralizing ; Antibodies, Viral ; Antigen presentation ; Antiviral Agents ; Apoptosis ; Biology and Life Sciences ; Blocking ; Care and treatment ; Cell culture ; Cytomegalovirus ; Cytotoxicity ; Dendritic cells ; Dengue fever ; Diagnosis ; Disease prevention ; Dosage and administration ; Ebola virus ; Effector cells ; Fc receptors ; Glycoproteins ; Health aspects ; HIV ; HIV (Viruses) ; HIV Antibodies ; Human immunodeficiency virus ; Humans ; Infections ; Influenza ; Influenza, Human ; Marburg virus disease ; Medicine and Health Sciences ; Pearls ; Proteins ; Receptors, Fc ; Research and Analysis Methods ; Rotavirus ; Severe acute respiratory syndrome coronavirus 2 ; Testing ; Vaccines ; Viral antibodies ; Viral diseases ; Viral infections ; Virus Diseases ; Viruses ; West Nile virus</subject><ispartof>PLoS pathogens, 2023-10, Vol.19 (10), p.e1011670-e1011670</ispartof><rights>Copyright: © 2023 Chandler et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Chandler et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Chandler et al 2023 Chandler et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c662t-ee0cfd2167d5e9a6ade18332241f5a5c0a27a4324db3cdd94a4a643d2ad163b3</citedby><cites>FETCH-LOGICAL-c662t-ee0cfd2167d5e9a6ade18332241f5a5c0a27a4324db3cdd94a4a643d2ad163b3</cites><orcidid>0000-0001-6299-9436 ; 0000-0002-9790-7420</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10553219/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10553219/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37796829$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Evans, Matthew J.</contributor><creatorcontrib>Chandler, Tawny L</creatorcontrib><creatorcontrib>Yang, Agnes</creatorcontrib><creatorcontrib>Otero, Claire E</creatorcontrib><creatorcontrib>Permar, Sallie R</creatorcontrib><creatorcontrib>Caddy, Sarah L</creatorcontrib><title>Protective mechanisms of nonneutralizing antiviral antibodies</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>Antibodies that can bind to viruses but are unable to block infection in cell culture are known as "nonneutralizing antibodies." Such antibodies are nearly universally elicited following viral infection and have been characterized in viral infections such as influenza, rotavirus, cytomegalovirus, HIV, and SARS-CoV-2. It has been widely assumed that these nonneutralizing antibodies do not function in a protective way in vivo and therefore are not desirable targets of antiviral interventions; however, increasing evidence now shows this not to be true. Several virus-specific nonneutralizing antibody responses have been correlated with protection in human studies and also shown to significantly reduce virus replication in animal models. The mechanisms by which many of these antibodies function is only now coming to light. While nonneutralizing antibodies cannot prevent viruses entering their host cell, nonneutralizing antibodies work in the extracellular space to recruit effector proteins or cells that can destroy the antibody-virus complex. Other nonneutralizing antibodies exert their effects inside cells, either by blocking the virus life cycle directly or by recruiting the intracellular Fc receptor TRIM21. In this review, we will discuss the multitude of ways in which nonneutralizing antibodies function against a range of viral infections.</description><subject>Analysis</subject><subject>Animal models</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Antibodies, Neutralizing</subject><subject>Antibodies, Viral</subject><subject>Antigen presentation</subject><subject>Antiviral Agents</subject><subject>Apoptosis</subject><subject>Biology and Life Sciences</subject><subject>Blocking</subject><subject>Care and treatment</subject><subject>Cell culture</subject><subject>Cytomegalovirus</subject><subject>Cytotoxicity</subject><subject>Dendritic cells</subject><subject>Dengue fever</subject><subject>Diagnosis</subject><subject>Disease prevention</subject><subject>Dosage and administration</subject><subject>Ebola virus</subject><subject>Effector cells</subject><subject>Fc receptors</subject><subject>Glycoproteins</subject><subject>Health aspects</subject><subject>HIV</subject><subject>HIV (Viruses)</subject><subject>HIV Antibodies</subject><subject>Human immunodeficiency virus</subject><subject>Humans</subject><subject>Infections</subject><subject>Influenza</subject><subject>Influenza, Human</subject><subject>Marburg virus disease</subject><subject>Medicine and Health Sciences</subject><subject>Pearls</subject><subject>Proteins</subject><subject>Receptors, Fc</subject><subject>Research and Analysis Methods</subject><subject>Rotavirus</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Testing</subject><subject>Vaccines</subject><subject>Viral antibodies</subject><subject>Viral diseases</subject><subject>Viral infections</subject><subject>Virus Diseases</subject><subject>Viruses</subject><subject>West Nile virus</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1v1DAQhiMEoqXwDxCsxAUOu_grdnJAqKr4WKkCBL1bE3uSepXYS5xUwK_H6aZVg3pBPng8fua159Vk2XNKNpQr-nYXxt5Du9nvYdhQQqlU5EF2TPOcrxVX4uGd-Ch7EuOOEEE5lY-zI65UKQtWHmfvvvVhQDO4K1x1aC7Bu9jFVahXPniP49BD6_4436zAJ8il43VUBeswPs0e1dBGfDbvJ9nFxw8XZ5_X518_bc9Oz9dGSjasEYmpLUs_tDmWIMEiLThnTNA6h9wQYAoEZ8JW3FhbChAgBbcMLJW84ifZy4Psvg1Rz41HzYksaUGSGYnYHggbYKf3veug_60DOH2dCH2joR-caVEXVhVQl1xUlRFYVkVVSaGEsarkXKFKWu_n18aqQ2vQTyYsRJc33l3qJlxpSpLfjJZJ4fWs0IefI8ZBdy4abFvwGMaoWaEEk0zS6eOv_kHvb2-mGkgdOF-H9LCZRPWpUowwxqVM1OYeKi2LnTPBY-1SflHwZlGQmAF_DQ2MMertj-__wX5ZsuLAmj7E2GN9ax4lehremyb1NLx6Ht5U9uKu8bdFN9PK_wLR7-rM</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Chandler, Tawny L</creator><creator>Yang, Agnes</creator><creator>Otero, Claire E</creator><creator>Permar, Sallie R</creator><creator>Caddy, Sarah L</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6299-9436</orcidid><orcidid>https://orcid.org/0000-0002-9790-7420</orcidid></search><sort><creationdate>20231001</creationdate><title>Protective mechanisms of nonneutralizing antiviral antibodies</title><author>Chandler, Tawny L ; Yang, Agnes ; Otero, Claire E ; Permar, Sallie R ; Caddy, Sarah L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c662t-ee0cfd2167d5e9a6ade18332241f5a5c0a27a4324db3cdd94a4a643d2ad163b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Animal models</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Antibodies, Neutralizing</topic><topic>Antibodies, Viral</topic><topic>Antigen presentation</topic><topic>Antiviral Agents</topic><topic>Apoptosis</topic><topic>Biology and Life Sciences</topic><topic>Blocking</topic><topic>Care and treatment</topic><topic>Cell culture</topic><topic>Cytomegalovirus</topic><topic>Cytotoxicity</topic><topic>Dendritic cells</topic><topic>Dengue fever</topic><topic>Diagnosis</topic><topic>Disease prevention</topic><topic>Dosage and administration</topic><topic>Ebola virus</topic><topic>Effector cells</topic><topic>Fc receptors</topic><topic>Glycoproteins</topic><topic>Health aspects</topic><topic>HIV</topic><topic>HIV (Viruses)</topic><topic>HIV Antibodies</topic><topic>Human immunodeficiency virus</topic><topic>Humans</topic><topic>Infections</topic><topic>Influenza</topic><topic>Influenza, Human</topic><topic>Marburg virus disease</topic><topic>Medicine and Health Sciences</topic><topic>Pearls</topic><topic>Proteins</topic><topic>Receptors, Fc</topic><topic>Research and Analysis Methods</topic><topic>Rotavirus</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Testing</topic><topic>Vaccines</topic><topic>Viral antibodies</topic><topic>Viral diseases</topic><topic>Viral infections</topic><topic>Virus Diseases</topic><topic>Viruses</topic><topic>West Nile virus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chandler, Tawny L</creatorcontrib><creatorcontrib>Yang, Agnes</creatorcontrib><creatorcontrib>Otero, Claire E</creatorcontrib><creatorcontrib>Permar, Sallie R</creatorcontrib><creatorcontrib>Caddy, Sarah L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chandler, Tawny L</au><au>Yang, Agnes</au><au>Otero, Claire E</au><au>Permar, Sallie R</au><au>Caddy, Sarah L</au><au>Evans, Matthew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protective mechanisms of nonneutralizing antiviral antibodies</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>19</volume><issue>10</issue><spage>e1011670</spage><epage>e1011670</epage><pages>e1011670-e1011670</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Antibodies that can bind to viruses but are unable to block infection in cell culture are known as "nonneutralizing antibodies." Such antibodies are nearly universally elicited following viral infection and have been characterized in viral infections such as influenza, rotavirus, cytomegalovirus, HIV, and SARS-CoV-2. It has been widely assumed that these nonneutralizing antibodies do not function in a protective way in vivo and therefore are not desirable targets of antiviral interventions; however, increasing evidence now shows this not to be true. Several virus-specific nonneutralizing antibody responses have been correlated with protection in human studies and also shown to significantly reduce virus replication in animal models. The mechanisms by which many of these antibodies function is only now coming to light. While nonneutralizing antibodies cannot prevent viruses entering their host cell, nonneutralizing antibodies work in the extracellular space to recruit effector proteins or cells that can destroy the antibody-virus complex. Other nonneutralizing antibodies exert their effects inside cells, either by blocking the virus life cycle directly or by recruiting the intracellular Fc receptor TRIM21. In this review, we will discuss the multitude of ways in which nonneutralizing antibodies function against a range of viral infections.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>37796829</pmid><doi>10.1371/journal.ppat.1011670</doi><tpages>e1011670</tpages><orcidid>https://orcid.org/0000-0001-6299-9436</orcidid><orcidid>https://orcid.org/0000-0002-9790-7420</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7374
ispartof PLoS pathogens, 2023-10, Vol.19 (10), p.e1011670-e1011670
issn 1553-7374
1553-7366
1553-7374
language eng
recordid cdi_plos_journals_3069180371
source MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central Open Access; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Analysis
Animal models
Animals
Antibodies
Antibodies, Neutralizing
Antibodies, Viral
Antigen presentation
Antiviral Agents
Apoptosis
Biology and Life Sciences
Blocking
Care and treatment
Cell culture
Cytomegalovirus
Cytotoxicity
Dendritic cells
Dengue fever
Diagnosis
Disease prevention
Dosage and administration
Ebola virus
Effector cells
Fc receptors
Glycoproteins
Health aspects
HIV
HIV (Viruses)
HIV Antibodies
Human immunodeficiency virus
Humans
Infections
Influenza
Influenza, Human
Marburg virus disease
Medicine and Health Sciences
Pearls
Proteins
Receptors, Fc
Research and Analysis Methods
Rotavirus
Severe acute respiratory syndrome coronavirus 2
Testing
Vaccines
Viral antibodies
Viral diseases
Viral infections
Virus Diseases
Viruses
West Nile virus
title Protective mechanisms of nonneutralizing antiviral antibodies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A49%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protective%20mechanisms%20of%20nonneutralizing%20antiviral%20antibodies&rft.jtitle=PLoS%20pathogens&rft.au=Chandler,%20Tawny%20L&rft.date=2023-10-01&rft.volume=19&rft.issue=10&rft.spage=e1011670&rft.epage=e1011670&rft.pages=e1011670-e1011670&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1011670&rft_dat=%3Cgale_plos_%3EA772022366%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069180371&rft_id=info:pmid/37796829&rft_galeid=A772022366&rft_doaj_id=oai_doaj_org_article_8d78af934bbc4e9b8bb6474cd79337e7&rfr_iscdi=true