Protective mechanisms of nonneutralizing antiviral antibodies
Antibodies that can bind to viruses but are unable to block infection in cell culture are known as "nonneutralizing antibodies." Such antibodies are nearly universally elicited following viral infection and have been characterized in viral infections such as influenza, rotavirus, cytomegal...
Gespeichert in:
Veröffentlicht in: | PLoS pathogens 2023-10, Vol.19 (10), p.e1011670-e1011670 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1011670 |
---|---|
container_issue | 10 |
container_start_page | e1011670 |
container_title | PLoS pathogens |
container_volume | 19 |
creator | Chandler, Tawny L Yang, Agnes Otero, Claire E Permar, Sallie R Caddy, Sarah L |
description | Antibodies that can bind to viruses but are unable to block infection in cell culture are known as "nonneutralizing antibodies." Such antibodies are nearly universally elicited following viral infection and have been characterized in viral infections such as influenza, rotavirus, cytomegalovirus, HIV, and SARS-CoV-2. It has been widely assumed that these nonneutralizing antibodies do not function in a protective way in vivo and therefore are not desirable targets of antiviral interventions; however, increasing evidence now shows this not to be true. Several virus-specific nonneutralizing antibody responses have been correlated with protection in human studies and also shown to significantly reduce virus replication in animal models. The mechanisms by which many of these antibodies function is only now coming to light. While nonneutralizing antibodies cannot prevent viruses entering their host cell, nonneutralizing antibodies work in the extracellular space to recruit effector proteins or cells that can destroy the antibody-virus complex. Other nonneutralizing antibodies exert their effects inside cells, either by blocking the virus life cycle directly or by recruiting the intracellular Fc receptor TRIM21. In this review, we will discuss the multitude of ways in which nonneutralizing antibodies function against a range of viral infections. |
doi_str_mv | 10.1371/journal.ppat.1011670 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3069180371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A772022366</galeid><doaj_id>oai_doaj_org_article_8d78af934bbc4e9b8bb6474cd79337e7</doaj_id><sourcerecordid>A772022366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c662t-ee0cfd2167d5e9a6ade18332241f5a5c0a27a4324db3cdd94a4a643d2ad163b3</originalsourceid><addsrcrecordid>eNqVkk1v1DAQhiMEoqXwDxCsxAUOu_grdnJAqKr4WKkCBL1bE3uSepXYS5xUwK_H6aZVg3pBPng8fua159Vk2XNKNpQr-nYXxt5Du9nvYdhQQqlU5EF2TPOcrxVX4uGd-Ch7EuOOEEE5lY-zI65UKQtWHmfvvvVhQDO4K1x1aC7Bu9jFVahXPniP49BD6_4436zAJ8il43VUBeswPs0e1dBGfDbvJ9nFxw8XZ5_X518_bc9Oz9dGSjasEYmpLUs_tDmWIMEiLThnTNA6h9wQYAoEZ8JW3FhbChAgBbcMLJW84ifZy4Psvg1Rz41HzYksaUGSGYnYHggbYKf3veug_60DOH2dCH2joR-caVEXVhVQl1xUlRFYVkVVSaGEsarkXKFKWu_n18aqQ2vQTyYsRJc33l3qJlxpSpLfjJZJ4fWs0IefI8ZBdy4abFvwGMaoWaEEk0zS6eOv_kHvb2-mGkgdOF-H9LCZRPWpUowwxqVM1OYeKi2LnTPBY-1SflHwZlGQmAF_DQ2MMertj-__wX5ZsuLAmj7E2GN9ax4lehremyb1NLx6Ht5U9uKu8bdFN9PK_wLR7-rM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069180371</pqid></control><display><type>article</type><title>Protective mechanisms of nonneutralizing antiviral antibodies</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Chandler, Tawny L ; Yang, Agnes ; Otero, Claire E ; Permar, Sallie R ; Caddy, Sarah L</creator><contributor>Evans, Matthew J.</contributor><creatorcontrib>Chandler, Tawny L ; Yang, Agnes ; Otero, Claire E ; Permar, Sallie R ; Caddy, Sarah L ; Evans, Matthew J.</creatorcontrib><description>Antibodies that can bind to viruses but are unable to block infection in cell culture are known as "nonneutralizing antibodies." Such antibodies are nearly universally elicited following viral infection and have been characterized in viral infections such as influenza, rotavirus, cytomegalovirus, HIV, and SARS-CoV-2. It has been widely assumed that these nonneutralizing antibodies do not function in a protective way in vivo and therefore are not desirable targets of antiviral interventions; however, increasing evidence now shows this not to be true. Several virus-specific nonneutralizing antibody responses have been correlated with protection in human studies and also shown to significantly reduce virus replication in animal models. The mechanisms by which many of these antibodies function is only now coming to light. While nonneutralizing antibodies cannot prevent viruses entering their host cell, nonneutralizing antibodies work in the extracellular space to recruit effector proteins or cells that can destroy the antibody-virus complex. Other nonneutralizing antibodies exert their effects inside cells, either by blocking the virus life cycle directly or by recruiting the intracellular Fc receptor TRIM21. In this review, we will discuss the multitude of ways in which nonneutralizing antibodies function against a range of viral infections.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1011670</identifier><identifier>PMID: 37796829</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Animal models ; Animals ; Antibodies ; Antibodies, Neutralizing ; Antibodies, Viral ; Antigen presentation ; Antiviral Agents ; Apoptosis ; Biology and Life Sciences ; Blocking ; Care and treatment ; Cell culture ; Cytomegalovirus ; Cytotoxicity ; Dendritic cells ; Dengue fever ; Diagnosis ; Disease prevention ; Dosage and administration ; Ebola virus ; Effector cells ; Fc receptors ; Glycoproteins ; Health aspects ; HIV ; HIV (Viruses) ; HIV Antibodies ; Human immunodeficiency virus ; Humans ; Infections ; Influenza ; Influenza, Human ; Marburg virus disease ; Medicine and Health Sciences ; Pearls ; Proteins ; Receptors, Fc ; Research and Analysis Methods ; Rotavirus ; Severe acute respiratory syndrome coronavirus 2 ; Testing ; Vaccines ; Viral antibodies ; Viral diseases ; Viral infections ; Virus Diseases ; Viruses ; West Nile virus</subject><ispartof>PLoS pathogens, 2023-10, Vol.19 (10), p.e1011670-e1011670</ispartof><rights>Copyright: © 2023 Chandler et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Chandler et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Chandler et al 2023 Chandler et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c662t-ee0cfd2167d5e9a6ade18332241f5a5c0a27a4324db3cdd94a4a643d2ad163b3</citedby><cites>FETCH-LOGICAL-c662t-ee0cfd2167d5e9a6ade18332241f5a5c0a27a4324db3cdd94a4a643d2ad163b3</cites><orcidid>0000-0001-6299-9436 ; 0000-0002-9790-7420</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10553219/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10553219/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37796829$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Evans, Matthew J.</contributor><creatorcontrib>Chandler, Tawny L</creatorcontrib><creatorcontrib>Yang, Agnes</creatorcontrib><creatorcontrib>Otero, Claire E</creatorcontrib><creatorcontrib>Permar, Sallie R</creatorcontrib><creatorcontrib>Caddy, Sarah L</creatorcontrib><title>Protective mechanisms of nonneutralizing antiviral antibodies</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>Antibodies that can bind to viruses but are unable to block infection in cell culture are known as "nonneutralizing antibodies." Such antibodies are nearly universally elicited following viral infection and have been characterized in viral infections such as influenza, rotavirus, cytomegalovirus, HIV, and SARS-CoV-2. It has been widely assumed that these nonneutralizing antibodies do not function in a protective way in vivo and therefore are not desirable targets of antiviral interventions; however, increasing evidence now shows this not to be true. Several virus-specific nonneutralizing antibody responses have been correlated with protection in human studies and also shown to significantly reduce virus replication in animal models. The mechanisms by which many of these antibodies function is only now coming to light. While nonneutralizing antibodies cannot prevent viruses entering their host cell, nonneutralizing antibodies work in the extracellular space to recruit effector proteins or cells that can destroy the antibody-virus complex. Other nonneutralizing antibodies exert their effects inside cells, either by blocking the virus life cycle directly or by recruiting the intracellular Fc receptor TRIM21. In this review, we will discuss the multitude of ways in which nonneutralizing antibodies function against a range of viral infections.</description><subject>Analysis</subject><subject>Animal models</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Antibodies, Neutralizing</subject><subject>Antibodies, Viral</subject><subject>Antigen presentation</subject><subject>Antiviral Agents</subject><subject>Apoptosis</subject><subject>Biology and Life Sciences</subject><subject>Blocking</subject><subject>Care and treatment</subject><subject>Cell culture</subject><subject>Cytomegalovirus</subject><subject>Cytotoxicity</subject><subject>Dendritic cells</subject><subject>Dengue fever</subject><subject>Diagnosis</subject><subject>Disease prevention</subject><subject>Dosage and administration</subject><subject>Ebola virus</subject><subject>Effector cells</subject><subject>Fc receptors</subject><subject>Glycoproteins</subject><subject>Health aspects</subject><subject>HIV</subject><subject>HIV (Viruses)</subject><subject>HIV Antibodies</subject><subject>Human immunodeficiency virus</subject><subject>Humans</subject><subject>Infections</subject><subject>Influenza</subject><subject>Influenza, Human</subject><subject>Marburg virus disease</subject><subject>Medicine and Health Sciences</subject><subject>Pearls</subject><subject>Proteins</subject><subject>Receptors, Fc</subject><subject>Research and Analysis Methods</subject><subject>Rotavirus</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Testing</subject><subject>Vaccines</subject><subject>Viral antibodies</subject><subject>Viral diseases</subject><subject>Viral infections</subject><subject>Virus Diseases</subject><subject>Viruses</subject><subject>West Nile virus</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1v1DAQhiMEoqXwDxCsxAUOu_grdnJAqKr4WKkCBL1bE3uSepXYS5xUwK_H6aZVg3pBPng8fua159Vk2XNKNpQr-nYXxt5Du9nvYdhQQqlU5EF2TPOcrxVX4uGd-Ch7EuOOEEE5lY-zI65UKQtWHmfvvvVhQDO4K1x1aC7Bu9jFVahXPniP49BD6_4436zAJ8il43VUBeswPs0e1dBGfDbvJ9nFxw8XZ5_X518_bc9Oz9dGSjasEYmpLUs_tDmWIMEiLThnTNA6h9wQYAoEZ8JW3FhbChAgBbcMLJW84ifZy4Psvg1Rz41HzYksaUGSGYnYHggbYKf3veug_60DOH2dCH2joR-caVEXVhVQl1xUlRFYVkVVSaGEsarkXKFKWu_n18aqQ2vQTyYsRJc33l3qJlxpSpLfjJZJ4fWs0IefI8ZBdy4abFvwGMaoWaEEk0zS6eOv_kHvb2-mGkgdOF-H9LCZRPWpUowwxqVM1OYeKi2LnTPBY-1SflHwZlGQmAF_DQ2MMertj-__wX5ZsuLAmj7E2GN9ax4lehremyb1NLx6Ht5U9uKu8bdFN9PK_wLR7-rM</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Chandler, Tawny L</creator><creator>Yang, Agnes</creator><creator>Otero, Claire E</creator><creator>Permar, Sallie R</creator><creator>Caddy, Sarah L</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6299-9436</orcidid><orcidid>https://orcid.org/0000-0002-9790-7420</orcidid></search><sort><creationdate>20231001</creationdate><title>Protective mechanisms of nonneutralizing antiviral antibodies</title><author>Chandler, Tawny L ; Yang, Agnes ; Otero, Claire E ; Permar, Sallie R ; Caddy, Sarah L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c662t-ee0cfd2167d5e9a6ade18332241f5a5c0a27a4324db3cdd94a4a643d2ad163b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Animal models</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Antibodies, Neutralizing</topic><topic>Antibodies, Viral</topic><topic>Antigen presentation</topic><topic>Antiviral Agents</topic><topic>Apoptosis</topic><topic>Biology and Life Sciences</topic><topic>Blocking</topic><topic>Care and treatment</topic><topic>Cell culture</topic><topic>Cytomegalovirus</topic><topic>Cytotoxicity</topic><topic>Dendritic cells</topic><topic>Dengue fever</topic><topic>Diagnosis</topic><topic>Disease prevention</topic><topic>Dosage and administration</topic><topic>Ebola virus</topic><topic>Effector cells</topic><topic>Fc receptors</topic><topic>Glycoproteins</topic><topic>Health aspects</topic><topic>HIV</topic><topic>HIV (Viruses)</topic><topic>HIV Antibodies</topic><topic>Human immunodeficiency virus</topic><topic>Humans</topic><topic>Infections</topic><topic>Influenza</topic><topic>Influenza, Human</topic><topic>Marburg virus disease</topic><topic>Medicine and Health Sciences</topic><topic>Pearls</topic><topic>Proteins</topic><topic>Receptors, Fc</topic><topic>Research and Analysis Methods</topic><topic>Rotavirus</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Testing</topic><topic>Vaccines</topic><topic>Viral antibodies</topic><topic>Viral diseases</topic><topic>Viral infections</topic><topic>Virus Diseases</topic><topic>Viruses</topic><topic>West Nile virus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chandler, Tawny L</creatorcontrib><creatorcontrib>Yang, Agnes</creatorcontrib><creatorcontrib>Otero, Claire E</creatorcontrib><creatorcontrib>Permar, Sallie R</creatorcontrib><creatorcontrib>Caddy, Sarah L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chandler, Tawny L</au><au>Yang, Agnes</au><au>Otero, Claire E</au><au>Permar, Sallie R</au><au>Caddy, Sarah L</au><au>Evans, Matthew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protective mechanisms of nonneutralizing antiviral antibodies</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>19</volume><issue>10</issue><spage>e1011670</spage><epage>e1011670</epage><pages>e1011670-e1011670</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Antibodies that can bind to viruses but are unable to block infection in cell culture are known as "nonneutralizing antibodies." Such antibodies are nearly universally elicited following viral infection and have been characterized in viral infections such as influenza, rotavirus, cytomegalovirus, HIV, and SARS-CoV-2. It has been widely assumed that these nonneutralizing antibodies do not function in a protective way in vivo and therefore are not desirable targets of antiviral interventions; however, increasing evidence now shows this not to be true. Several virus-specific nonneutralizing antibody responses have been correlated with protection in human studies and also shown to significantly reduce virus replication in animal models. The mechanisms by which many of these antibodies function is only now coming to light. While nonneutralizing antibodies cannot prevent viruses entering their host cell, nonneutralizing antibodies work in the extracellular space to recruit effector proteins or cells that can destroy the antibody-virus complex. Other nonneutralizing antibodies exert their effects inside cells, either by blocking the virus life cycle directly or by recruiting the intracellular Fc receptor TRIM21. In this review, we will discuss the multitude of ways in which nonneutralizing antibodies function against a range of viral infections.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>37796829</pmid><doi>10.1371/journal.ppat.1011670</doi><tpages>e1011670</tpages><orcidid>https://orcid.org/0000-0001-6299-9436</orcidid><orcidid>https://orcid.org/0000-0002-9790-7420</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7374 |
ispartof | PLoS pathogens, 2023-10, Vol.19 (10), p.e1011670-e1011670 |
issn | 1553-7374 1553-7366 1553-7374 |
language | eng |
recordid | cdi_plos_journals_3069180371 |
source | MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central Open Access; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Analysis Animal models Animals Antibodies Antibodies, Neutralizing Antibodies, Viral Antigen presentation Antiviral Agents Apoptosis Biology and Life Sciences Blocking Care and treatment Cell culture Cytomegalovirus Cytotoxicity Dendritic cells Dengue fever Diagnosis Disease prevention Dosage and administration Ebola virus Effector cells Fc receptors Glycoproteins Health aspects HIV HIV (Viruses) HIV Antibodies Human immunodeficiency virus Humans Infections Influenza Influenza, Human Marburg virus disease Medicine and Health Sciences Pearls Proteins Receptors, Fc Research and Analysis Methods Rotavirus Severe acute respiratory syndrome coronavirus 2 Testing Vaccines Viral antibodies Viral diseases Viral infections Virus Diseases Viruses West Nile virus |
title | Protective mechanisms of nonneutralizing antiviral antibodies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A49%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protective%20mechanisms%20of%20nonneutralizing%20antiviral%20antibodies&rft.jtitle=PLoS%20pathogens&rft.au=Chandler,%20Tawny%20L&rft.date=2023-10-01&rft.volume=19&rft.issue=10&rft.spage=e1011670&rft.epage=e1011670&rft.pages=e1011670-e1011670&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1011670&rft_dat=%3Cgale_plos_%3EA772022366%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069180371&rft_id=info:pmid/37796829&rft_galeid=A772022366&rft_doaj_id=oai_doaj_org_article_8d78af934bbc4e9b8bb6474cd79337e7&rfr_iscdi=true |