Divergence of TORC1-mediated stress response leads to novel acquired stress resistance in a pathogenic yeast
Acquired stress resistance (ASR) enables organisms to prepare for environmental changes that occur after an initial stressor. However, the genetic basis for ASR and how the underlying network evolved remain poorly understood. In this study, we discovered that a short phosphate starvation induces oxi...
Gespeichert in:
Veröffentlicht in: | PLoS pathogens 2023-10, Vol.19 (10), p.e1011748 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | e1011748 |
container_title | PLoS pathogens |
container_volume | 19 |
creator | Liang, Jinye Tang, Hanxi Snyder, Lindsey F Youngstrom, Christopher E He, Bin Z |
description | Acquired stress resistance (ASR) enables organisms to prepare for environmental changes that occur after an initial stressor. However, the genetic basis for ASR and how the underlying network evolved remain poorly understood. In this study, we discovered that a short phosphate starvation induces oxidative stress response (OSR) genes in the pathogenic yeast C. glabrata and protects it against a severe H2O2 stress; the same treatment, however, provides little benefit in the low pathogenic-potential relative, S. cerevisiae. This ASR involves the same transcription factors (TFs) as the OSR, but with different combinatorial logics. We show that Target-of-Rapamycin Complex 1 (TORC1) is differentially inhibited by phosphate starvation in the two species and contributes to the ASR via its proximal effector, Sch9. Therefore, evolution of the phosphate starvation-induced ASR involves the rewiring of TORC1's response to phosphate limitation and the repurposing of TF-target gene networks for the OSR using new regulatory logics. |
doi_str_mv | 10.1371/journal.ppat.1011748 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3069180184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A772022426</galeid><doaj_id>oai_doaj_org_article_20d2d19efeff418892a0a759250306f1</doaj_id><sourcerecordid>A772022426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c611t-1d23159f0910d0d342719d4da9fbae468f1f4b3c3906f8a28a9bcac6b8a6a6653</originalsourceid><addsrcrecordid>eNqVkltrFDEUgAdRbK3-A9EBX_Rh15wkk8k8SVlvC8VCrc_hbC7blNnJNplZ7L83605LR_oigSQk3_mSczhF8RrIHFgNH6_DEDts59st9nMgADWXT4pjqCo2q1nNnz7YHxUvUromhAMD8bw4YrWsASg7LtrPfmfj2nbalsGVl-cXC5htrPHYW1OmPtqUyjxtQ5ds2Vo0qexD2YWdbUvUN4OPE86nHvcu35VY5p9dhez2ury1mPqXxTOHbbKvxvWk-PX1y-Xi--zs_NtycXo20wKgn4GhDKrGkQaIIYZxWkNjuMHGrdByIR04vmKaNUQ4iVRis9KoxUqiQCEqdlK8PXi3bUhqLFRSjIgGJAHJM7E8ECbgtdpGv8F4qwJ69fcgxLXC2HvdWkWJoQYa66xzHKRsKBKsq4ZWJAsdZNen8bVhlSunbddHbCfS6U3nr9Q67BQQQaERMhvej4YYbgaberXxSdu2xc6GISkqJVBeN5xl9N0_6OPpjdQacwa-cyE_rPdSdVrXlFDKqcjU_BEqD2M3XofOOp_PJwEfJgGZ6e3vfo1DSmr58-I_2B9Tlh9YHUNK0br74gFR-2a_S1Ltm12NzZ7D3jws_H3QXXezP-u1-j4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069180184</pqid></control><display><type>article</type><title>Divergence of TORC1-mediated stress response leads to novel acquired stress resistance in a pathogenic yeast</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS)</source><creator>Liang, Jinye ; Tang, Hanxi ; Snyder, Lindsey F ; Youngstrom, Christopher E ; He, Bin Z</creator><creatorcontrib>Liang, Jinye ; Tang, Hanxi ; Snyder, Lindsey F ; Youngstrom, Christopher E ; He, Bin Z</creatorcontrib><description>Acquired stress resistance (ASR) enables organisms to prepare for environmental changes that occur after an initial stressor. However, the genetic basis for ASR and how the underlying network evolved remain poorly understood. In this study, we discovered that a short phosphate starvation induces oxidative stress response (OSR) genes in the pathogenic yeast C. glabrata and protects it against a severe H2O2 stress; the same treatment, however, provides little benefit in the low pathogenic-potential relative, S. cerevisiae. This ASR involves the same transcription factors (TFs) as the OSR, but with different combinatorial logics. We show that Target-of-Rapamycin Complex 1 (TORC1) is differentially inhibited by phosphate starvation in the two species and contributes to the ASR via its proximal effector, Sch9. Therefore, evolution of the phosphate starvation-induced ASR involves the rewiring of TORC1's response to phosphate limitation and the repurposing of TF-target gene networks for the OSR using new regulatory logics.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1011748</identifier><identifier>PMID: 37871123</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Biology and Life Sciences ; Combinatorial analysis ; DNA binding proteins ; Environmental changes ; Evolution ; Gene Expression Regulation, Fungal ; Genes ; Genetic aspects ; Health aspects ; Hydrogen Peroxide ; Kinases ; Mechanistic Target of Rapamycin Complex 1 ; Medicine and Health Sciences ; Oxidative stress ; Pathogens ; Phosphate starvation response ; Phosphates ; Physical Sciences ; Rapamycin ; Research and Analysis Methods ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - metabolism ; Stress (Physiology) ; Transcription factors ; Virulence ; Yeast ; Yeast fungi ; Yeasts</subject><ispartof>PLoS pathogens, 2023-10, Vol.19 (10), p.e1011748</ispartof><rights>Copyright: © 2023 Liang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Liang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Liang et al 2023 Liang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c611t-1d23159f0910d0d342719d4da9fbae468f1f4b3c3906f8a28a9bcac6b8a6a6653</cites><orcidid>0000-0002-3072-6238</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10621968/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10621968/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37871123$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Jinye</creatorcontrib><creatorcontrib>Tang, Hanxi</creatorcontrib><creatorcontrib>Snyder, Lindsey F</creatorcontrib><creatorcontrib>Youngstrom, Christopher E</creatorcontrib><creatorcontrib>He, Bin Z</creatorcontrib><title>Divergence of TORC1-mediated stress response leads to novel acquired stress resistance in a pathogenic yeast</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>Acquired stress resistance (ASR) enables organisms to prepare for environmental changes that occur after an initial stressor. However, the genetic basis for ASR and how the underlying network evolved remain poorly understood. In this study, we discovered that a short phosphate starvation induces oxidative stress response (OSR) genes in the pathogenic yeast C. glabrata and protects it against a severe H2O2 stress; the same treatment, however, provides little benefit in the low pathogenic-potential relative, S. cerevisiae. This ASR involves the same transcription factors (TFs) as the OSR, but with different combinatorial logics. We show that Target-of-Rapamycin Complex 1 (TORC1) is differentially inhibited by phosphate starvation in the two species and contributes to the ASR via its proximal effector, Sch9. Therefore, evolution of the phosphate starvation-induced ASR involves the rewiring of TORC1's response to phosphate limitation and the repurposing of TF-target gene networks for the OSR using new regulatory logics.</description><subject>Analysis</subject><subject>Biology and Life Sciences</subject><subject>Combinatorial analysis</subject><subject>DNA binding proteins</subject><subject>Environmental changes</subject><subject>Evolution</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Hydrogen Peroxide</subject><subject>Kinases</subject><subject>Mechanistic Target of Rapamycin Complex 1</subject><subject>Medicine and Health Sciences</subject><subject>Oxidative stress</subject><subject>Pathogens</subject><subject>Phosphate starvation response</subject><subject>Phosphates</subject><subject>Physical Sciences</subject><subject>Rapamycin</subject><subject>Research and Analysis Methods</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Stress (Physiology)</subject><subject>Transcription factors</subject><subject>Virulence</subject><subject>Yeast</subject><subject>Yeast fungi</subject><subject>Yeasts</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkltrFDEUgAdRbK3-A9EBX_Rh15wkk8k8SVlvC8VCrc_hbC7blNnJNplZ7L83605LR_oigSQk3_mSczhF8RrIHFgNH6_DEDts59st9nMgADWXT4pjqCo2q1nNnz7YHxUvUromhAMD8bw4YrWsASg7LtrPfmfj2nbalsGVl-cXC5htrPHYW1OmPtqUyjxtQ5ds2Vo0qexD2YWdbUvUN4OPE86nHvcu35VY5p9dhez2ury1mPqXxTOHbbKvxvWk-PX1y-Xi--zs_NtycXo20wKgn4GhDKrGkQaIIYZxWkNjuMHGrdByIR04vmKaNUQ4iVRis9KoxUqiQCEqdlK8PXi3bUhqLFRSjIgGJAHJM7E8ECbgtdpGv8F4qwJ69fcgxLXC2HvdWkWJoQYa66xzHKRsKBKsq4ZWJAsdZNen8bVhlSunbddHbCfS6U3nr9Q67BQQQaERMhvej4YYbgaberXxSdu2xc6GISkqJVBeN5xl9N0_6OPpjdQacwa-cyE_rPdSdVrXlFDKqcjU_BEqD2M3XofOOp_PJwEfJgGZ6e3vfo1DSmr58-I_2B9Tlh9YHUNK0br74gFR-2a_S1Ltm12NzZ7D3jws_H3QXXezP-u1-j4</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Liang, Jinye</creator><creator>Tang, Hanxi</creator><creator>Snyder, Lindsey F</creator><creator>Youngstrom, Christopher E</creator><creator>He, Bin Z</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3072-6238</orcidid></search><sort><creationdate>20231001</creationdate><title>Divergence of TORC1-mediated stress response leads to novel acquired stress resistance in a pathogenic yeast</title><author>Liang, Jinye ; Tang, Hanxi ; Snyder, Lindsey F ; Youngstrom, Christopher E ; He, Bin Z</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c611t-1d23159f0910d0d342719d4da9fbae468f1f4b3c3906f8a28a9bcac6b8a6a6653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Biology and Life Sciences</topic><topic>Combinatorial analysis</topic><topic>DNA binding proteins</topic><topic>Environmental changes</topic><topic>Evolution</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Hydrogen Peroxide</topic><topic>Kinases</topic><topic>Mechanistic Target of Rapamycin Complex 1</topic><topic>Medicine and Health Sciences</topic><topic>Oxidative stress</topic><topic>Pathogens</topic><topic>Phosphate starvation response</topic><topic>Phosphates</topic><topic>Physical Sciences</topic><topic>Rapamycin</topic><topic>Research and Analysis Methods</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Stress (Physiology)</topic><topic>Transcription factors</topic><topic>Virulence</topic><topic>Yeast</topic><topic>Yeast fungi</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Jinye</creatorcontrib><creatorcontrib>Tang, Hanxi</creatorcontrib><creatorcontrib>Snyder, Lindsey F</creatorcontrib><creatorcontrib>Youngstrom, Christopher E</creatorcontrib><creatorcontrib>He, Bin Z</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Jinye</au><au>Tang, Hanxi</au><au>Snyder, Lindsey F</au><au>Youngstrom, Christopher E</au><au>He, Bin Z</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Divergence of TORC1-mediated stress response leads to novel acquired stress resistance in a pathogenic yeast</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>19</volume><issue>10</issue><spage>e1011748</spage><pages>e1011748-</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Acquired stress resistance (ASR) enables organisms to prepare for environmental changes that occur after an initial stressor. However, the genetic basis for ASR and how the underlying network evolved remain poorly understood. In this study, we discovered that a short phosphate starvation induces oxidative stress response (OSR) genes in the pathogenic yeast C. glabrata and protects it against a severe H2O2 stress; the same treatment, however, provides little benefit in the low pathogenic-potential relative, S. cerevisiae. This ASR involves the same transcription factors (TFs) as the OSR, but with different combinatorial logics. We show that Target-of-Rapamycin Complex 1 (TORC1) is differentially inhibited by phosphate starvation in the two species and contributes to the ASR via its proximal effector, Sch9. Therefore, evolution of the phosphate starvation-induced ASR involves the rewiring of TORC1's response to phosphate limitation and the repurposing of TF-target gene networks for the OSR using new regulatory logics.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>37871123</pmid><doi>10.1371/journal.ppat.1011748</doi><tpages>e1011748</tpages><orcidid>https://orcid.org/0000-0002-3072-6238</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7374 |
ispartof | PLoS pathogens, 2023-10, Vol.19 (10), p.e1011748 |
issn | 1553-7374 1553-7366 1553-7374 |
language | eng |
recordid | cdi_plos_journals_3069180184 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access; Public Library of Science (PLoS) |
subjects | Analysis Biology and Life Sciences Combinatorial analysis DNA binding proteins Environmental changes Evolution Gene Expression Regulation, Fungal Genes Genetic aspects Health aspects Hydrogen Peroxide Kinases Mechanistic Target of Rapamycin Complex 1 Medicine and Health Sciences Oxidative stress Pathogens Phosphate starvation response Phosphates Physical Sciences Rapamycin Research and Analysis Methods Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - metabolism Stress (Physiology) Transcription factors Virulence Yeast Yeast fungi Yeasts |
title | Divergence of TORC1-mediated stress response leads to novel acquired stress resistance in a pathogenic yeast |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A38%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Divergence%20of%20TORC1-mediated%20stress%20response%20leads%20to%20novel%20acquired%20stress%20resistance%20in%20a%20pathogenic%20yeast&rft.jtitle=PLoS%20pathogens&rft.au=Liang,%20Jinye&rft.date=2023-10-01&rft.volume=19&rft.issue=10&rft.spage=e1011748&rft.pages=e1011748-&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1011748&rft_dat=%3Cgale_plos_%3EA772022426%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069180184&rft_id=info:pmid/37871123&rft_galeid=A772022426&rft_doaj_id=oai_doaj_org_article_20d2d19efeff418892a0a759250306f1&rfr_iscdi=true |