Divergence of TORC1-mediated stress response leads to novel acquired stress resistance in a pathogenic yeast

Acquired stress resistance (ASR) enables organisms to prepare for environmental changes that occur after an initial stressor. However, the genetic basis for ASR and how the underlying network evolved remain poorly understood. In this study, we discovered that a short phosphate starvation induces oxi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS pathogens 2023-10, Vol.19 (10), p.e1011748
Hauptverfasser: Liang, Jinye, Tang, Hanxi, Snyder, Lindsey F, Youngstrom, Christopher E, He, Bin Z
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page e1011748
container_title PLoS pathogens
container_volume 19
creator Liang, Jinye
Tang, Hanxi
Snyder, Lindsey F
Youngstrom, Christopher E
He, Bin Z
description Acquired stress resistance (ASR) enables organisms to prepare for environmental changes that occur after an initial stressor. However, the genetic basis for ASR and how the underlying network evolved remain poorly understood. In this study, we discovered that a short phosphate starvation induces oxidative stress response (OSR) genes in the pathogenic yeast C. glabrata and protects it against a severe H2O2 stress; the same treatment, however, provides little benefit in the low pathogenic-potential relative, S. cerevisiae. This ASR involves the same transcription factors (TFs) as the OSR, but with different combinatorial logics. We show that Target-of-Rapamycin Complex 1 (TORC1) is differentially inhibited by phosphate starvation in the two species and contributes to the ASR via its proximal effector, Sch9. Therefore, evolution of the phosphate starvation-induced ASR involves the rewiring of TORC1's response to phosphate limitation and the repurposing of TF-target gene networks for the OSR using new regulatory logics.
doi_str_mv 10.1371/journal.ppat.1011748
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3069180184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A772022426</galeid><doaj_id>oai_doaj_org_article_20d2d19efeff418892a0a759250306f1</doaj_id><sourcerecordid>A772022426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c611t-1d23159f0910d0d342719d4da9fbae468f1f4b3c3906f8a28a9bcac6b8a6a6653</originalsourceid><addsrcrecordid>eNqVkltrFDEUgAdRbK3-A9EBX_Rh15wkk8k8SVlvC8VCrc_hbC7blNnJNplZ7L83605LR_oigSQk3_mSczhF8RrIHFgNH6_DEDts59st9nMgADWXT4pjqCo2q1nNnz7YHxUvUromhAMD8bw4YrWsASg7LtrPfmfj2nbalsGVl-cXC5htrPHYW1OmPtqUyjxtQ5ds2Vo0qexD2YWdbUvUN4OPE86nHvcu35VY5p9dhez2ury1mPqXxTOHbbKvxvWk-PX1y-Xi--zs_NtycXo20wKgn4GhDKrGkQaIIYZxWkNjuMHGrdByIR04vmKaNUQ4iVRis9KoxUqiQCEqdlK8PXi3bUhqLFRSjIgGJAHJM7E8ECbgtdpGv8F4qwJ69fcgxLXC2HvdWkWJoQYa66xzHKRsKBKsq4ZWJAsdZNen8bVhlSunbddHbCfS6U3nr9Q67BQQQaERMhvej4YYbgaberXxSdu2xc6GISkqJVBeN5xl9N0_6OPpjdQacwa-cyE_rPdSdVrXlFDKqcjU_BEqD2M3XofOOp_PJwEfJgGZ6e3vfo1DSmr58-I_2B9Tlh9YHUNK0br74gFR-2a_S1Ltm12NzZ7D3jws_H3QXXezP-u1-j4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069180184</pqid></control><display><type>article</type><title>Divergence of TORC1-mediated stress response leads to novel acquired stress resistance in a pathogenic yeast</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS)</source><creator>Liang, Jinye ; Tang, Hanxi ; Snyder, Lindsey F ; Youngstrom, Christopher E ; He, Bin Z</creator><creatorcontrib>Liang, Jinye ; Tang, Hanxi ; Snyder, Lindsey F ; Youngstrom, Christopher E ; He, Bin Z</creatorcontrib><description>Acquired stress resistance (ASR) enables organisms to prepare for environmental changes that occur after an initial stressor. However, the genetic basis for ASR and how the underlying network evolved remain poorly understood. In this study, we discovered that a short phosphate starvation induces oxidative stress response (OSR) genes in the pathogenic yeast C. glabrata and protects it against a severe H2O2 stress; the same treatment, however, provides little benefit in the low pathogenic-potential relative, S. cerevisiae. This ASR involves the same transcription factors (TFs) as the OSR, but with different combinatorial logics. We show that Target-of-Rapamycin Complex 1 (TORC1) is differentially inhibited by phosphate starvation in the two species and contributes to the ASR via its proximal effector, Sch9. Therefore, evolution of the phosphate starvation-induced ASR involves the rewiring of TORC1's response to phosphate limitation and the repurposing of TF-target gene networks for the OSR using new regulatory logics.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1011748</identifier><identifier>PMID: 37871123</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Biology and Life Sciences ; Combinatorial analysis ; DNA binding proteins ; Environmental changes ; Evolution ; Gene Expression Regulation, Fungal ; Genes ; Genetic aspects ; Health aspects ; Hydrogen Peroxide ; Kinases ; Mechanistic Target of Rapamycin Complex 1 ; Medicine and Health Sciences ; Oxidative stress ; Pathogens ; Phosphate starvation response ; Phosphates ; Physical Sciences ; Rapamycin ; Research and Analysis Methods ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - metabolism ; Stress (Physiology) ; Transcription factors ; Virulence ; Yeast ; Yeast fungi ; Yeasts</subject><ispartof>PLoS pathogens, 2023-10, Vol.19 (10), p.e1011748</ispartof><rights>Copyright: © 2023 Liang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Liang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Liang et al 2023 Liang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c611t-1d23159f0910d0d342719d4da9fbae468f1f4b3c3906f8a28a9bcac6b8a6a6653</cites><orcidid>0000-0002-3072-6238</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10621968/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10621968/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37871123$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Jinye</creatorcontrib><creatorcontrib>Tang, Hanxi</creatorcontrib><creatorcontrib>Snyder, Lindsey F</creatorcontrib><creatorcontrib>Youngstrom, Christopher E</creatorcontrib><creatorcontrib>He, Bin Z</creatorcontrib><title>Divergence of TORC1-mediated stress response leads to novel acquired stress resistance in a pathogenic yeast</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>Acquired stress resistance (ASR) enables organisms to prepare for environmental changes that occur after an initial stressor. However, the genetic basis for ASR and how the underlying network evolved remain poorly understood. In this study, we discovered that a short phosphate starvation induces oxidative stress response (OSR) genes in the pathogenic yeast C. glabrata and protects it against a severe H2O2 stress; the same treatment, however, provides little benefit in the low pathogenic-potential relative, S. cerevisiae. This ASR involves the same transcription factors (TFs) as the OSR, but with different combinatorial logics. We show that Target-of-Rapamycin Complex 1 (TORC1) is differentially inhibited by phosphate starvation in the two species and contributes to the ASR via its proximal effector, Sch9. Therefore, evolution of the phosphate starvation-induced ASR involves the rewiring of TORC1's response to phosphate limitation and the repurposing of TF-target gene networks for the OSR using new regulatory logics.</description><subject>Analysis</subject><subject>Biology and Life Sciences</subject><subject>Combinatorial analysis</subject><subject>DNA binding proteins</subject><subject>Environmental changes</subject><subject>Evolution</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Hydrogen Peroxide</subject><subject>Kinases</subject><subject>Mechanistic Target of Rapamycin Complex 1</subject><subject>Medicine and Health Sciences</subject><subject>Oxidative stress</subject><subject>Pathogens</subject><subject>Phosphate starvation response</subject><subject>Phosphates</subject><subject>Physical Sciences</subject><subject>Rapamycin</subject><subject>Research and Analysis Methods</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Stress (Physiology)</subject><subject>Transcription factors</subject><subject>Virulence</subject><subject>Yeast</subject><subject>Yeast fungi</subject><subject>Yeasts</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkltrFDEUgAdRbK3-A9EBX_Rh15wkk8k8SVlvC8VCrc_hbC7blNnJNplZ7L83605LR_oigSQk3_mSczhF8RrIHFgNH6_DEDts59st9nMgADWXT4pjqCo2q1nNnz7YHxUvUromhAMD8bw4YrWsASg7LtrPfmfj2nbalsGVl-cXC5htrPHYW1OmPtqUyjxtQ5ds2Vo0qexD2YWdbUvUN4OPE86nHvcu35VY5p9dhez2ury1mPqXxTOHbbKvxvWk-PX1y-Xi--zs_NtycXo20wKgn4GhDKrGkQaIIYZxWkNjuMHGrdByIR04vmKaNUQ4iVRis9KoxUqiQCEqdlK8PXi3bUhqLFRSjIgGJAHJM7E8ECbgtdpGv8F4qwJ69fcgxLXC2HvdWkWJoQYa66xzHKRsKBKsq4ZWJAsdZNen8bVhlSunbddHbCfS6U3nr9Q67BQQQaERMhvej4YYbgaberXxSdu2xc6GISkqJVBeN5xl9N0_6OPpjdQacwa-cyE_rPdSdVrXlFDKqcjU_BEqD2M3XofOOp_PJwEfJgGZ6e3vfo1DSmr58-I_2B9Tlh9YHUNK0br74gFR-2a_S1Ltm12NzZ7D3jws_H3QXXezP-u1-j4</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Liang, Jinye</creator><creator>Tang, Hanxi</creator><creator>Snyder, Lindsey F</creator><creator>Youngstrom, Christopher E</creator><creator>He, Bin Z</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3072-6238</orcidid></search><sort><creationdate>20231001</creationdate><title>Divergence of TORC1-mediated stress response leads to novel acquired stress resistance in a pathogenic yeast</title><author>Liang, Jinye ; Tang, Hanxi ; Snyder, Lindsey F ; Youngstrom, Christopher E ; He, Bin Z</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c611t-1d23159f0910d0d342719d4da9fbae468f1f4b3c3906f8a28a9bcac6b8a6a6653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Biology and Life Sciences</topic><topic>Combinatorial analysis</topic><topic>DNA binding proteins</topic><topic>Environmental changes</topic><topic>Evolution</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Hydrogen Peroxide</topic><topic>Kinases</topic><topic>Mechanistic Target of Rapamycin Complex 1</topic><topic>Medicine and Health Sciences</topic><topic>Oxidative stress</topic><topic>Pathogens</topic><topic>Phosphate starvation response</topic><topic>Phosphates</topic><topic>Physical Sciences</topic><topic>Rapamycin</topic><topic>Research and Analysis Methods</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Stress (Physiology)</topic><topic>Transcription factors</topic><topic>Virulence</topic><topic>Yeast</topic><topic>Yeast fungi</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Jinye</creatorcontrib><creatorcontrib>Tang, Hanxi</creatorcontrib><creatorcontrib>Snyder, Lindsey F</creatorcontrib><creatorcontrib>Youngstrom, Christopher E</creatorcontrib><creatorcontrib>He, Bin Z</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Jinye</au><au>Tang, Hanxi</au><au>Snyder, Lindsey F</au><au>Youngstrom, Christopher E</au><au>He, Bin Z</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Divergence of TORC1-mediated stress response leads to novel acquired stress resistance in a pathogenic yeast</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>19</volume><issue>10</issue><spage>e1011748</spage><pages>e1011748-</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Acquired stress resistance (ASR) enables organisms to prepare for environmental changes that occur after an initial stressor. However, the genetic basis for ASR and how the underlying network evolved remain poorly understood. In this study, we discovered that a short phosphate starvation induces oxidative stress response (OSR) genes in the pathogenic yeast C. glabrata and protects it against a severe H2O2 stress; the same treatment, however, provides little benefit in the low pathogenic-potential relative, S. cerevisiae. This ASR involves the same transcription factors (TFs) as the OSR, but with different combinatorial logics. We show that Target-of-Rapamycin Complex 1 (TORC1) is differentially inhibited by phosphate starvation in the two species and contributes to the ASR via its proximal effector, Sch9. Therefore, evolution of the phosphate starvation-induced ASR involves the rewiring of TORC1's response to phosphate limitation and the repurposing of TF-target gene networks for the OSR using new regulatory logics.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>37871123</pmid><doi>10.1371/journal.ppat.1011748</doi><tpages>e1011748</tpages><orcidid>https://orcid.org/0000-0002-3072-6238</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7374
ispartof PLoS pathogens, 2023-10, Vol.19 (10), p.e1011748
issn 1553-7374
1553-7366
1553-7374
language eng
recordid cdi_plos_journals_3069180184
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access; Public Library of Science (PLoS)
subjects Analysis
Biology and Life Sciences
Combinatorial analysis
DNA binding proteins
Environmental changes
Evolution
Gene Expression Regulation, Fungal
Genes
Genetic aspects
Health aspects
Hydrogen Peroxide
Kinases
Mechanistic Target of Rapamycin Complex 1
Medicine and Health Sciences
Oxidative stress
Pathogens
Phosphate starvation response
Phosphates
Physical Sciences
Rapamycin
Research and Analysis Methods
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - metabolism
Stress (Physiology)
Transcription factors
Virulence
Yeast
Yeast fungi
Yeasts
title Divergence of TORC1-mediated stress response leads to novel acquired stress resistance in a pathogenic yeast
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A38%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Divergence%20of%20TORC1-mediated%20stress%20response%20leads%20to%20novel%20acquired%20stress%20resistance%20in%20a%20pathogenic%20yeast&rft.jtitle=PLoS%20pathogens&rft.au=Liang,%20Jinye&rft.date=2023-10-01&rft.volume=19&rft.issue=10&rft.spage=e1011748&rft.pages=e1011748-&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1011748&rft_dat=%3Cgale_plos_%3EA772022426%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069180184&rft_id=info:pmid/37871123&rft_galeid=A772022426&rft_doaj_id=oai_doaj_org_article_20d2d19efeff418892a0a759250306f1&rfr_iscdi=true