Gene expression changes throughout the life cycle allow a bacterial plant pathogen to persist in diverse environmental habitats

Bacterial pathogens exhibit a remarkable ability to persist and thrive in diverse ecological niches. Understanding the mechanisms enabling their transition between habitats is crucial to control dissemination and potential disease outbreaks. Here, we use Ralstonia solanacearum, the causing agent of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS pathogens 2023-12, Vol.19 (12), p.e1011888-e1011888
Hauptverfasser: de Pedro-Jové, Roger, Corral, Jordi, Rocafort, Mercedes, Puigvert, Marina, Azam, Fàtima Latif, Vandecaveye, Agustina, Macho, Alberto P, Balsalobre, Carlos, Coll, Núria S, Orellano, Elena, Valls, Marc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1011888
container_issue 12
container_start_page e1011888
container_title PLoS pathogens
container_volume 19
creator de Pedro-Jové, Roger
Corral, Jordi
Rocafort, Mercedes
Puigvert, Marina
Azam, Fàtima Latif
Vandecaveye, Agustina
Macho, Alberto P
Balsalobre, Carlos
Coll, Núria S
Orellano, Elena
Valls, Marc
description Bacterial pathogens exhibit a remarkable ability to persist and thrive in diverse ecological niches. Understanding the mechanisms enabling their transition between habitats is crucial to control dissemination and potential disease outbreaks. Here, we use Ralstonia solanacearum, the causing agent of the bacterial wilt disease, as a model to investigate pathogen adaptation to water and soil, two environments that act as bacterial reservoirs, and compare this information with gene expression in planta. Gene expression in water resembled that observed during late xylem colonization, with an intriguing induction of the type 3 secretion system (T3SS). Alkaline pH and nutrient scarcity-conditions also encountered during late infection stages-were identified as the triggers for this T3SS induction. In the soil environment, R. solanacearum upregulated stress-responses and genes for the use of alternate carbon sources, such as phenylacetate catabolism and the glyoxylate cycle, and downregulated virulence-associated genes. We proved through gain- and loss-of-function experiments that genes associated with the oxidative stress response, such as the regulator OxyR and the catalase KatG, are key for bacterial survival in soil, as their deletion cause a decrease in culturability associated with a premature induction of the viable but non culturable state (VBNC). This work identifies essential factors necessary for R. solanacearum to complete its life cycle and is the first comprehensive gene expression analysis in all environments occupied by a bacterial plant pathogen, providing valuable insights into its biology and adaptation to unexplored habitats.
doi_str_mv 10.1371/journal.ppat.1011888
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3069180183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A778100283</galeid><sourcerecordid>A778100283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-3fa3bd17f4e1fc720f1e7d3e6d28569ddb4c8be5a80ca8c5864fb7f6c8fb1f093</originalsourceid><addsrcrecordid>eNqVkl1vFCEUhidGY2v1Hxgl8UYvdoWFGdirpmm0Nmk08eOaMMxhhoaFEZi1vfKvy9pp0zW9MVzw9bznHF5OVb0keEkoJ-8vwxS9cstxVHlJMCFCiEfVIalruuCUs8f31gfVs5QuMWaEkuZpdUAFIXQlyGH1-ww8ILgaI6Rkg0d6UL6HhPIQw9QPYcplCchZA0hfawdIORd-IYVapTNEqxwanfIZlTqG0INHOaARYrIpI-tRZ7dlU3L4rY3Bb8DnIhlUa7PK6Xn1xCiX4MU8H1U_Pn74fvppcfHl7Pz05GKha1bnBTWKth3hhgExmq-wIcA7Ck23EnWz7rqWadFCrQTWSuhaNMy03DRamJYYvKZH1eubuKMLSc7eJUlxsyYCE0ELcTwTU7uBTpc6o3JyjHaj4rUMysr9G28H2YetJJg3dM14ifB2jhDDzwlSlhubNLjiDoQpydW6fEDNWM0K-uYf9OGSZqpXDqT1JpTEehdUnnAuCMarv9TyAaqMDjZWBw_GlvM9wbs9QWEyXOVeTSnJ829f_4P9vM-yG1bHkFIEc2cewXLXs7ePlLuelXPPFtmr-8bfiW6blP4BKA3rEw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069180183</pqid></control><display><type>article</type><title>Gene expression changes throughout the life cycle allow a bacterial plant pathogen to persist in diverse environmental habitats</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>de Pedro-Jové, Roger ; Corral, Jordi ; Rocafort, Mercedes ; Puigvert, Marina ; Azam, Fàtima Latif ; Vandecaveye, Agustina ; Macho, Alberto P ; Balsalobre, Carlos ; Coll, Núria S ; Orellano, Elena ; Valls, Marc</creator><contributor>Mackey, David</contributor><creatorcontrib>de Pedro-Jové, Roger ; Corral, Jordi ; Rocafort, Mercedes ; Puigvert, Marina ; Azam, Fàtima Latif ; Vandecaveye, Agustina ; Macho, Alberto P ; Balsalobre, Carlos ; Coll, Núria S ; Orellano, Elena ; Valls, Marc ; Mackey, David</creatorcontrib><description>Bacterial pathogens exhibit a remarkable ability to persist and thrive in diverse ecological niches. Understanding the mechanisms enabling their transition between habitats is crucial to control dissemination and potential disease outbreaks. Here, we use Ralstonia solanacearum, the causing agent of the bacterial wilt disease, as a model to investigate pathogen adaptation to water and soil, two environments that act as bacterial reservoirs, and compare this information with gene expression in planta. Gene expression in water resembled that observed during late xylem colonization, with an intriguing induction of the type 3 secretion system (T3SS). Alkaline pH and nutrient scarcity-conditions also encountered during late infection stages-were identified as the triggers for this T3SS induction. In the soil environment, R. solanacearum upregulated stress-responses and genes for the use of alternate carbon sources, such as phenylacetate catabolism and the glyoxylate cycle, and downregulated virulence-associated genes. We proved through gain- and loss-of-function experiments that genes associated with the oxidative stress response, such as the regulator OxyR and the catalase KatG, are key for bacterial survival in soil, as their deletion cause a decrease in culturability associated with a premature induction of the viable but non culturable state (VBNC). This work identifies essential factors necessary for R. solanacearum to complete its life cycle and is the first comprehensive gene expression analysis in all environments occupied by a bacterial plant pathogen, providing valuable insights into its biology and adaptation to unexplored habitats.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1011888</identifier><identifier>PMID: 38113281</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptation ; Analysis ; Animals ; Bacteria ; Bacterial infections ; Biology and Life Sciences ; Carbon sources ; Catabolism ; Catalase ; Disease control ; Ecological niches ; Ecology and Environmental Sciences ; Environmental conditions ; Enzymes ; Epidemics ; Gene Expression ; Genes ; Genetic research ; Glyoxylate cycle ; Habitats ; Life Cycle Stages ; Life cycles ; Medical research ; Medicine and Health Sciences ; Medicine, Experimental ; Metabolism ; Motility ; Niche (Ecology) ; Oxidative stress ; Pathogens ; Plant Diseases - genetics ; Plant Diseases - microbiology ; Plant-pathogen relationships ; Prevention ; Principal components analysis ; Protection and preservation ; Ralstonia solanacearum - genetics ; Ralstonia solanacearum - metabolism ; Ribonucleic acid ; Risk factors ; RNA ; Soil ; Soil ecology ; Soil environment ; Soil microbiology ; Soil microorganisms ; Soil water ; Solanum lycopersicum ; Streptococcus infections ; Virulence ; Virulence (Microbiology) ; Water ; Water - metabolism ; Wilt ; Xylem</subject><ispartof>PLoS pathogens, 2023-12, Vol.19 (12), p.e1011888-e1011888</ispartof><rights>Copyright: © 2023 de Pedro-Jové et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 de Pedro-Jové et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 de Pedro-Jové et al 2023 de Pedro-Jové et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c545t-3fa3bd17f4e1fc720f1e7d3e6d28569ddb4c8be5a80ca8c5864fb7f6c8fb1f093</cites><orcidid>0000-0003-2312-0091</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10763947/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10763947/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38113281$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Mackey, David</contributor><creatorcontrib>de Pedro-Jové, Roger</creatorcontrib><creatorcontrib>Corral, Jordi</creatorcontrib><creatorcontrib>Rocafort, Mercedes</creatorcontrib><creatorcontrib>Puigvert, Marina</creatorcontrib><creatorcontrib>Azam, Fàtima Latif</creatorcontrib><creatorcontrib>Vandecaveye, Agustina</creatorcontrib><creatorcontrib>Macho, Alberto P</creatorcontrib><creatorcontrib>Balsalobre, Carlos</creatorcontrib><creatorcontrib>Coll, Núria S</creatorcontrib><creatorcontrib>Orellano, Elena</creatorcontrib><creatorcontrib>Valls, Marc</creatorcontrib><title>Gene expression changes throughout the life cycle allow a bacterial plant pathogen to persist in diverse environmental habitats</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>Bacterial pathogens exhibit a remarkable ability to persist and thrive in diverse ecological niches. Understanding the mechanisms enabling their transition between habitats is crucial to control dissemination and potential disease outbreaks. Here, we use Ralstonia solanacearum, the causing agent of the bacterial wilt disease, as a model to investigate pathogen adaptation to water and soil, two environments that act as bacterial reservoirs, and compare this information with gene expression in planta. Gene expression in water resembled that observed during late xylem colonization, with an intriguing induction of the type 3 secretion system (T3SS). Alkaline pH and nutrient scarcity-conditions also encountered during late infection stages-were identified as the triggers for this T3SS induction. In the soil environment, R. solanacearum upregulated stress-responses and genes for the use of alternate carbon sources, such as phenylacetate catabolism and the glyoxylate cycle, and downregulated virulence-associated genes. We proved through gain- and loss-of-function experiments that genes associated with the oxidative stress response, such as the regulator OxyR and the catalase KatG, are key for bacterial survival in soil, as their deletion cause a decrease in culturability associated with a premature induction of the viable but non culturable state (VBNC). This work identifies essential factors necessary for R. solanacearum to complete its life cycle and is the first comprehensive gene expression analysis in all environments occupied by a bacterial plant pathogen, providing valuable insights into its biology and adaptation to unexplored habitats.</description><subject>Adaptation</subject><subject>Analysis</subject><subject>Animals</subject><subject>Bacteria</subject><subject>Bacterial infections</subject><subject>Biology and Life Sciences</subject><subject>Carbon sources</subject><subject>Catabolism</subject><subject>Catalase</subject><subject>Disease control</subject><subject>Ecological niches</subject><subject>Ecology and Environmental Sciences</subject><subject>Environmental conditions</subject><subject>Enzymes</subject><subject>Epidemics</subject><subject>Gene Expression</subject><subject>Genes</subject><subject>Genetic research</subject><subject>Glyoxylate cycle</subject><subject>Habitats</subject><subject>Life Cycle Stages</subject><subject>Life cycles</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Medicine, Experimental</subject><subject>Metabolism</subject><subject>Motility</subject><subject>Niche (Ecology)</subject><subject>Oxidative stress</subject><subject>Pathogens</subject><subject>Plant Diseases - genetics</subject><subject>Plant Diseases - microbiology</subject><subject>Plant-pathogen relationships</subject><subject>Prevention</subject><subject>Principal components analysis</subject><subject>Protection and preservation</subject><subject>Ralstonia solanacearum - genetics</subject><subject>Ralstonia solanacearum - metabolism</subject><subject>Ribonucleic acid</subject><subject>Risk factors</subject><subject>RNA</subject><subject>Soil</subject><subject>Soil ecology</subject><subject>Soil environment</subject><subject>Soil microbiology</subject><subject>Soil microorganisms</subject><subject>Soil water</subject><subject>Solanum lycopersicum</subject><subject>Streptococcus infections</subject><subject>Virulence</subject><subject>Virulence (Microbiology)</subject><subject>Water</subject><subject>Water - metabolism</subject><subject>Wilt</subject><subject>Xylem</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqVkl1vFCEUhidGY2v1Hxgl8UYvdoWFGdirpmm0Nmk08eOaMMxhhoaFEZi1vfKvy9pp0zW9MVzw9bznHF5OVb0keEkoJ-8vwxS9cstxVHlJMCFCiEfVIalruuCUs8f31gfVs5QuMWaEkuZpdUAFIXQlyGH1-ww8ILgaI6Rkg0d6UL6HhPIQw9QPYcplCchZA0hfawdIORd-IYVapTNEqxwanfIZlTqG0INHOaARYrIpI-tRZ7dlU3L4rY3Bb8DnIhlUa7PK6Xn1xCiX4MU8H1U_Pn74fvppcfHl7Pz05GKha1bnBTWKth3hhgExmq-wIcA7Ck23EnWz7rqWadFCrQTWSuhaNMy03DRamJYYvKZH1eubuKMLSc7eJUlxsyYCE0ELcTwTU7uBTpc6o3JyjHaj4rUMysr9G28H2YetJJg3dM14ifB2jhDDzwlSlhubNLjiDoQpydW6fEDNWM0K-uYf9OGSZqpXDqT1JpTEehdUnnAuCMarv9TyAaqMDjZWBw_GlvM9wbs9QWEyXOVeTSnJ829f_4P9vM-yG1bHkFIEc2cewXLXs7ePlLuelXPPFtmr-8bfiW6blP4BKA3rEw</recordid><startdate>20231219</startdate><enddate>20231219</enddate><creator>de Pedro-Jové, Roger</creator><creator>Corral, Jordi</creator><creator>Rocafort, Mercedes</creator><creator>Puigvert, Marina</creator><creator>Azam, Fàtima Latif</creator><creator>Vandecaveye, Agustina</creator><creator>Macho, Alberto P</creator><creator>Balsalobre, Carlos</creator><creator>Coll, Núria S</creator><creator>Orellano, Elena</creator><creator>Valls, Marc</creator><general>Public Library of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2312-0091</orcidid></search><sort><creationdate>20231219</creationdate><title>Gene expression changes throughout the life cycle allow a bacterial plant pathogen to persist in diverse environmental habitats</title><author>de Pedro-Jové, Roger ; Corral, Jordi ; Rocafort, Mercedes ; Puigvert, Marina ; Azam, Fàtima Latif ; Vandecaveye, Agustina ; Macho, Alberto P ; Balsalobre, Carlos ; Coll, Núria S ; Orellano, Elena ; Valls, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-3fa3bd17f4e1fc720f1e7d3e6d28569ddb4c8be5a80ca8c5864fb7f6c8fb1f093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation</topic><topic>Analysis</topic><topic>Animals</topic><topic>Bacteria</topic><topic>Bacterial infections</topic><topic>Biology and Life Sciences</topic><topic>Carbon sources</topic><topic>Catabolism</topic><topic>Catalase</topic><topic>Disease control</topic><topic>Ecological niches</topic><topic>Ecology and Environmental Sciences</topic><topic>Environmental conditions</topic><topic>Enzymes</topic><topic>Epidemics</topic><topic>Gene Expression</topic><topic>Genes</topic><topic>Genetic research</topic><topic>Glyoxylate cycle</topic><topic>Habitats</topic><topic>Life Cycle Stages</topic><topic>Life cycles</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Medicine, Experimental</topic><topic>Metabolism</topic><topic>Motility</topic><topic>Niche (Ecology)</topic><topic>Oxidative stress</topic><topic>Pathogens</topic><topic>Plant Diseases - genetics</topic><topic>Plant Diseases - microbiology</topic><topic>Plant-pathogen relationships</topic><topic>Prevention</topic><topic>Principal components analysis</topic><topic>Protection and preservation</topic><topic>Ralstonia solanacearum - genetics</topic><topic>Ralstonia solanacearum - metabolism</topic><topic>Ribonucleic acid</topic><topic>Risk factors</topic><topic>RNA</topic><topic>Soil</topic><topic>Soil ecology</topic><topic>Soil environment</topic><topic>Soil microbiology</topic><topic>Soil microorganisms</topic><topic>Soil water</topic><topic>Solanum lycopersicum</topic><topic>Streptococcus infections</topic><topic>Virulence</topic><topic>Virulence (Microbiology)</topic><topic>Water</topic><topic>Water - metabolism</topic><topic>Wilt</topic><topic>Xylem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Pedro-Jové, Roger</creatorcontrib><creatorcontrib>Corral, Jordi</creatorcontrib><creatorcontrib>Rocafort, Mercedes</creatorcontrib><creatorcontrib>Puigvert, Marina</creatorcontrib><creatorcontrib>Azam, Fàtima Latif</creatorcontrib><creatorcontrib>Vandecaveye, Agustina</creatorcontrib><creatorcontrib>Macho, Alberto P</creatorcontrib><creatorcontrib>Balsalobre, Carlos</creatorcontrib><creatorcontrib>Coll, Núria S</creatorcontrib><creatorcontrib>Orellano, Elena</creatorcontrib><creatorcontrib>Valls, Marc</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Pedro-Jové, Roger</au><au>Corral, Jordi</au><au>Rocafort, Mercedes</au><au>Puigvert, Marina</au><au>Azam, Fàtima Latif</au><au>Vandecaveye, Agustina</au><au>Macho, Alberto P</au><au>Balsalobre, Carlos</au><au>Coll, Núria S</au><au>Orellano, Elena</au><au>Valls, Marc</au><au>Mackey, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene expression changes throughout the life cycle allow a bacterial plant pathogen to persist in diverse environmental habitats</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2023-12-19</date><risdate>2023</risdate><volume>19</volume><issue>12</issue><spage>e1011888</spage><epage>e1011888</epage><pages>e1011888-e1011888</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Bacterial pathogens exhibit a remarkable ability to persist and thrive in diverse ecological niches. Understanding the mechanisms enabling their transition between habitats is crucial to control dissemination and potential disease outbreaks. Here, we use Ralstonia solanacearum, the causing agent of the bacterial wilt disease, as a model to investigate pathogen adaptation to water and soil, two environments that act as bacterial reservoirs, and compare this information with gene expression in planta. Gene expression in water resembled that observed during late xylem colonization, with an intriguing induction of the type 3 secretion system (T3SS). Alkaline pH and nutrient scarcity-conditions also encountered during late infection stages-were identified as the triggers for this T3SS induction. In the soil environment, R. solanacearum upregulated stress-responses and genes for the use of alternate carbon sources, such as phenylacetate catabolism and the glyoxylate cycle, and downregulated virulence-associated genes. We proved through gain- and loss-of-function experiments that genes associated with the oxidative stress response, such as the regulator OxyR and the catalase KatG, are key for bacterial survival in soil, as their deletion cause a decrease in culturability associated with a premature induction of the viable but non culturable state (VBNC). This work identifies essential factors necessary for R. solanacearum to complete its life cycle and is the first comprehensive gene expression analysis in all environments occupied by a bacterial plant pathogen, providing valuable insights into its biology and adaptation to unexplored habitats.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>38113281</pmid><doi>10.1371/journal.ppat.1011888</doi><tpages>e1011888</tpages><orcidid>https://orcid.org/0000-0003-2312-0091</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7374
ispartof PLoS pathogens, 2023-12, Vol.19 (12), p.e1011888-e1011888
issn 1553-7374
1553-7366
1553-7374
language eng
recordid cdi_plos_journals_3069180183
source MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central Open Access; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Adaptation
Analysis
Animals
Bacteria
Bacterial infections
Biology and Life Sciences
Carbon sources
Catabolism
Catalase
Disease control
Ecological niches
Ecology and Environmental Sciences
Environmental conditions
Enzymes
Epidemics
Gene Expression
Genes
Genetic research
Glyoxylate cycle
Habitats
Life Cycle Stages
Life cycles
Medical research
Medicine and Health Sciences
Medicine, Experimental
Metabolism
Motility
Niche (Ecology)
Oxidative stress
Pathogens
Plant Diseases - genetics
Plant Diseases - microbiology
Plant-pathogen relationships
Prevention
Principal components analysis
Protection and preservation
Ralstonia solanacearum - genetics
Ralstonia solanacearum - metabolism
Ribonucleic acid
Risk factors
RNA
Soil
Soil ecology
Soil environment
Soil microbiology
Soil microorganisms
Soil water
Solanum lycopersicum
Streptococcus infections
Virulence
Virulence (Microbiology)
Water
Water - metabolism
Wilt
Xylem
title Gene expression changes throughout the life cycle allow a bacterial plant pathogen to persist in diverse environmental habitats
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A45%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20expression%20changes%20throughout%20the%20life%20cycle%20allow%20a%20bacterial%20plant%20pathogen%20to%20persist%20in%20diverse%20environmental%20habitats&rft.jtitle=PLoS%20pathogens&rft.au=de%20Pedro-Jov%C3%A9,%20Roger&rft.date=2023-12-19&rft.volume=19&rft.issue=12&rft.spage=e1011888&rft.epage=e1011888&rft.pages=e1011888-e1011888&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1011888&rft_dat=%3Cgale_plos_%3EA778100283%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069180183&rft_id=info:pmid/38113281&rft_galeid=A778100283&rfr_iscdi=true