Validity conditions of approximations for a target-mediated drug disposition model: A novel first-order approximation and its comparison to other approximations

Target-mediated drug disposition (TMDD) is a phenomenon characterized by a drug's high-affinity binding to a target molecule, which significantly influences its pharmacokinetic profile within an organism. The comprehensive TMDD model delineates this interaction, yet it may become overly complex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2024-04, Vol.20 (4), p.e1012066-e1012066
Hauptverfasser: Byun, Jong Hyuk, Jeon, Hye Seon, Yun, Hwi-Yeol, Kim, Jae Kyoung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1012066
container_issue 4
container_start_page e1012066
container_title PLoS computational biology
container_volume 20
creator Byun, Jong Hyuk
Jeon, Hye Seon
Yun, Hwi-Yeol
Kim, Jae Kyoung
description Target-mediated drug disposition (TMDD) is a phenomenon characterized by a drug's high-affinity binding to a target molecule, which significantly influences its pharmacokinetic profile within an organism. The comprehensive TMDD model delineates this interaction, yet it may become overly complex and computationally demanding in the absence of specific concentration data for the target or its complexes. Consequently, simplified TMDD models employing quasi-steady state approximations (QSSAs) have been introduced; however, the precise conditions under which these models yield accurate results require further elucidation. Here, we establish the validity of three simplified TMDD models: the Michaelis-Menten model reduced with the standard QSSA (mTMDD), the QSS model reduced with the total QSSA (qTMDD), and a first-order approximation of the total QSSA (pTMDD). Specifically, we find that mTMDD is applicable only when initial drug concentrations substantially exceed total target concentrations, while qTMDD can be used for all drug concentrations. Notably, pTMDD offers a simpler and faster alternative to qTMDD, with broader applicability than mTMDD. These findings are confirmed with antibody-drug conjugate real-world data. Our findings provide a framework for selecting appropriate simplified TMDD models while ensuring accuracy, potentially enhancing drug development and facilitating safer, more personalized treatments.
doi_str_mv 10.1371/journal.pcbi.1012066
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3069179556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A792348174</galeid><doaj_id>oai_doaj_org_article_1de7f4eb70b643da97351ebde5c34844</doaj_id><sourcerecordid>A792348174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c611t-56220c9792b1264d57f191c8ca9ae0395731492eb3fcba4d08ded65983f9b4a73</originalsourceid><addsrcrecordid>eNqVU8tu1DAUjRCIlsIfILDEBhYZfOPYidmgUcVjpAokXlvLsZ2pqyRObU_V_g2fitNJq6bqBmVh6-acc889yc2yl4BXQCp4f-Z2fpDdalSNXQGGAjP2KDsESkleEVo_vnM_yJ6FcIZxunL2NDsgNaOMM3aY_f0jO6ttvELKDem0bgjItUiOo3eXtpf7Sus8kihKvzUx7422MhqNtN9tkbZhdOGaiXqnTfcBrdHgLkyHWutDzJ3Xxi8FkRw0sjGkpv0ovQ2pFB1y8fQ-MjzPnrSyC-bFfB5lvz9_-nX8NT_5_mVzvD7JFQOIOWVFgRWveNFAwUpNqxY4qFpJLg0mnFYESl6YhrSqkaXGtTaaUV6TljelrMhR9nqvO3YuiDncIAhmHCpOKUuIzR6hnTwTo08O_ZVw0orrgvNbIX20qjMCtKna0jQVblhJtOTpI4BptKGKlHVZJq2Pc7ddk-JUZohedgvR5ZvBnoqtuxAAmGMCkBTezgrene9MiKK3QZmuk4Nxu8l4ySgAhcn4m3vQh8ebUVuZJrBD61JjNYmKdYo1-YZqMr56AJUebXqbfiHT2lRfEN4tCAkTzWXcyl0IYvPzx39gvy2x5R6rvAvBm_Y2PMBiWpCbIcW0IGJekER7dTf4W9LNRpB_ybkPtQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069179556</pqid></control><display><type>article</type><title>Validity conditions of approximations for a target-mediated drug disposition model: A novel first-order approximation and its comparison to other approximations</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Byun, Jong Hyuk ; Jeon, Hye Seon ; Yun, Hwi-Yeol ; Kim, Jae Kyoung</creator><contributor>Gallo, James</contributor><creatorcontrib>Byun, Jong Hyuk ; Jeon, Hye Seon ; Yun, Hwi-Yeol ; Kim, Jae Kyoung ; Gallo, James</creatorcontrib><description>Target-mediated drug disposition (TMDD) is a phenomenon characterized by a drug's high-affinity binding to a target molecule, which significantly influences its pharmacokinetic profile within an organism. The comprehensive TMDD model delineates this interaction, yet it may become overly complex and computationally demanding in the absence of specific concentration data for the target or its complexes. Consequently, simplified TMDD models employing quasi-steady state approximations (QSSAs) have been introduced; however, the precise conditions under which these models yield accurate results require further elucidation. Here, we establish the validity of three simplified TMDD models: the Michaelis-Menten model reduced with the standard QSSA (mTMDD), the QSS model reduced with the total QSSA (qTMDD), and a first-order approximation of the total QSSA (pTMDD). Specifically, we find that mTMDD is applicable only when initial drug concentrations substantially exceed total target concentrations, while qTMDD can be used for all drug concentrations. Notably, pTMDD offers a simpler and faster alternative to qTMDD, with broader applicability than mTMDD. These findings are confirmed with antibody-drug conjugate real-world data. Our findings provide a framework for selecting appropriate simplified TMDD models while ensuring accuracy, potentially enhancing drug development and facilitating safer, more personalized treatments.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1012066</identifier><identifier>PMID: 38656966</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Approximation ; Computational Biology - methods ; Computer Simulation ; Drug development ; Drug dosages ; Drug targeting ; Humans ; Medicine and Health Sciences ; Models, Biological ; Ordinary differential equations ; Pharmaceutical Preparations - metabolism ; Pharmaceutical research ; Pharmacokinetics ; Physical Sciences ; Quasi-steady states ; Reproducibility of Results ; Validity</subject><ispartof>PLoS computational biology, 2024-04, Vol.20 (4), p.e1012066-e1012066</ispartof><rights>Copyright: © 2024 Byun et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Byun et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Byun et al 2024 Byun et al</rights><rights>2024 Byun et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c611t-56220c9792b1264d57f191c8ca9ae0395731492eb3fcba4d08ded65983f9b4a73</cites><orcidid>0000-0001-6334-8176 ; 0000-0001-8793-2449 ; 0000-0001-7842-2172</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11090311/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11090311/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38656966$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Gallo, James</contributor><creatorcontrib>Byun, Jong Hyuk</creatorcontrib><creatorcontrib>Jeon, Hye Seon</creatorcontrib><creatorcontrib>Yun, Hwi-Yeol</creatorcontrib><creatorcontrib>Kim, Jae Kyoung</creatorcontrib><title>Validity conditions of approximations for a target-mediated drug disposition model: A novel first-order approximation and its comparison to other approximations</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Target-mediated drug disposition (TMDD) is a phenomenon characterized by a drug's high-affinity binding to a target molecule, which significantly influences its pharmacokinetic profile within an organism. The comprehensive TMDD model delineates this interaction, yet it may become overly complex and computationally demanding in the absence of specific concentration data for the target or its complexes. Consequently, simplified TMDD models employing quasi-steady state approximations (QSSAs) have been introduced; however, the precise conditions under which these models yield accurate results require further elucidation. Here, we establish the validity of three simplified TMDD models: the Michaelis-Menten model reduced with the standard QSSA (mTMDD), the QSS model reduced with the total QSSA (qTMDD), and a first-order approximation of the total QSSA (pTMDD). Specifically, we find that mTMDD is applicable only when initial drug concentrations substantially exceed total target concentrations, while qTMDD can be used for all drug concentrations. Notably, pTMDD offers a simpler and faster alternative to qTMDD, with broader applicability than mTMDD. These findings are confirmed with antibody-drug conjugate real-world data. Our findings provide a framework for selecting appropriate simplified TMDD models while ensuring accuracy, potentially enhancing drug development and facilitating safer, more personalized treatments.</description><subject>Approximation</subject><subject>Computational Biology - methods</subject><subject>Computer Simulation</subject><subject>Drug development</subject><subject>Drug dosages</subject><subject>Drug targeting</subject><subject>Humans</subject><subject>Medicine and Health Sciences</subject><subject>Models, Biological</subject><subject>Ordinary differential equations</subject><subject>Pharmaceutical Preparations - metabolism</subject><subject>Pharmaceutical research</subject><subject>Pharmacokinetics</subject><subject>Physical Sciences</subject><subject>Quasi-steady states</subject><subject>Reproducibility of Results</subject><subject>Validity</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVU8tu1DAUjRCIlsIfILDEBhYZfOPYidmgUcVjpAokXlvLsZ2pqyRObU_V_g2fitNJq6bqBmVh6-acc889yc2yl4BXQCp4f-Z2fpDdalSNXQGGAjP2KDsESkleEVo_vnM_yJ6FcIZxunL2NDsgNaOMM3aY_f0jO6ttvELKDem0bgjItUiOo3eXtpf7Sus8kihKvzUx7422MhqNtN9tkbZhdOGaiXqnTfcBrdHgLkyHWutDzJ3Xxi8FkRw0sjGkpv0ovQ2pFB1y8fQ-MjzPnrSyC-bFfB5lvz9_-nX8NT_5_mVzvD7JFQOIOWVFgRWveNFAwUpNqxY4qFpJLg0mnFYESl6YhrSqkaXGtTaaUV6TljelrMhR9nqvO3YuiDncIAhmHCpOKUuIzR6hnTwTo08O_ZVw0orrgvNbIX20qjMCtKna0jQVblhJtOTpI4BptKGKlHVZJq2Pc7ddk-JUZohedgvR5ZvBnoqtuxAAmGMCkBTezgrene9MiKK3QZmuk4Nxu8l4ySgAhcn4m3vQh8ebUVuZJrBD61JjNYmKdYo1-YZqMr56AJUebXqbfiHT2lRfEN4tCAkTzWXcyl0IYvPzx39gvy2x5R6rvAvBm_Y2PMBiWpCbIcW0IGJekER7dTf4W9LNRpB_ybkPtQ</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Byun, Jong Hyuk</creator><creator>Jeon, Hye Seon</creator><creator>Yun, Hwi-Yeol</creator><creator>Kim, Jae Kyoung</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6334-8176</orcidid><orcidid>https://orcid.org/0000-0001-8793-2449</orcidid><orcidid>https://orcid.org/0000-0001-7842-2172</orcidid></search><sort><creationdate>20240401</creationdate><title>Validity conditions of approximations for a target-mediated drug disposition model: A novel first-order approximation and its comparison to other approximations</title><author>Byun, Jong Hyuk ; Jeon, Hye Seon ; Yun, Hwi-Yeol ; Kim, Jae Kyoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c611t-56220c9792b1264d57f191c8ca9ae0395731492eb3fcba4d08ded65983f9b4a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation</topic><topic>Computational Biology - methods</topic><topic>Computer Simulation</topic><topic>Drug development</topic><topic>Drug dosages</topic><topic>Drug targeting</topic><topic>Humans</topic><topic>Medicine and Health Sciences</topic><topic>Models, Biological</topic><topic>Ordinary differential equations</topic><topic>Pharmaceutical Preparations - metabolism</topic><topic>Pharmaceutical research</topic><topic>Pharmacokinetics</topic><topic>Physical Sciences</topic><topic>Quasi-steady states</topic><topic>Reproducibility of Results</topic><topic>Validity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Byun, Jong Hyuk</creatorcontrib><creatorcontrib>Jeon, Hye Seon</creatorcontrib><creatorcontrib>Yun, Hwi-Yeol</creatorcontrib><creatorcontrib>Kim, Jae Kyoung</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Byun, Jong Hyuk</au><au>Jeon, Hye Seon</au><au>Yun, Hwi-Yeol</au><au>Kim, Jae Kyoung</au><au>Gallo, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Validity conditions of approximations for a target-mediated drug disposition model: A novel first-order approximation and its comparison to other approximations</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>20</volume><issue>4</issue><spage>e1012066</spage><epage>e1012066</epage><pages>e1012066-e1012066</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Target-mediated drug disposition (TMDD) is a phenomenon characterized by a drug's high-affinity binding to a target molecule, which significantly influences its pharmacokinetic profile within an organism. The comprehensive TMDD model delineates this interaction, yet it may become overly complex and computationally demanding in the absence of specific concentration data for the target or its complexes. Consequently, simplified TMDD models employing quasi-steady state approximations (QSSAs) have been introduced; however, the precise conditions under which these models yield accurate results require further elucidation. Here, we establish the validity of three simplified TMDD models: the Michaelis-Menten model reduced with the standard QSSA (mTMDD), the QSS model reduced with the total QSSA (qTMDD), and a first-order approximation of the total QSSA (pTMDD). Specifically, we find that mTMDD is applicable only when initial drug concentrations substantially exceed total target concentrations, while qTMDD can be used for all drug concentrations. Notably, pTMDD offers a simpler and faster alternative to qTMDD, with broader applicability than mTMDD. These findings are confirmed with antibody-drug conjugate real-world data. Our findings provide a framework for selecting appropriate simplified TMDD models while ensuring accuracy, potentially enhancing drug development and facilitating safer, more personalized treatments.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>38656966</pmid><doi>10.1371/journal.pcbi.1012066</doi><tpages>e1012066</tpages><orcidid>https://orcid.org/0000-0001-6334-8176</orcidid><orcidid>https://orcid.org/0000-0001-8793-2449</orcidid><orcidid>https://orcid.org/0000-0001-7842-2172</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2024-04, Vol.20 (4), p.e1012066-e1012066
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_3069179556
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central
subjects Approximation
Computational Biology - methods
Computer Simulation
Drug development
Drug dosages
Drug targeting
Humans
Medicine and Health Sciences
Models, Biological
Ordinary differential equations
Pharmaceutical Preparations - metabolism
Pharmaceutical research
Pharmacokinetics
Physical Sciences
Quasi-steady states
Reproducibility of Results
Validity
title Validity conditions of approximations for a target-mediated drug disposition model: A novel first-order approximation and its comparison to other approximations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A21%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Validity%20conditions%20of%20approximations%20for%20a%20target-mediated%20drug%20disposition%20model:%20A%20novel%20first-order%20approximation%20and%20its%20comparison%20to%20other%20approximations&rft.jtitle=PLoS%20computational%20biology&rft.au=Byun,%20Jong%20Hyuk&rft.date=2024-04-01&rft.volume=20&rft.issue=4&rft.spage=e1012066&rft.epage=e1012066&rft.pages=e1012066-e1012066&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1012066&rft_dat=%3Cgale_plos_%3EA792348174%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069179556&rft_id=info:pmid/38656966&rft_galeid=A792348174&rft_doaj_id=oai_doaj_org_article_1de7f4eb70b643da97351ebde5c34844&rfr_iscdi=true