Machine-learning and mechanistic modeling of metastatic breast cancer after neoadjuvant treatment

Clinical trials involving systemic neoadjuvant treatments in breast cancer aim to shrink tumors before surgery while simultaneously allowing for controlled evaluation of biomarkers, toxicity, and suppression of distant (occult) metastatic disease. Yet neoadjuvant clinical trials are rarely preceded...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2024-05, Vol.20 (5), p.e1012088-e1012088
Hauptverfasser: Benzekry, Sebastien, Mastri, Michalis, Nicolò, Chiara, Ebos, John M L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1012088
container_issue 5
container_start_page e1012088
container_title PLoS computational biology
container_volume 20
creator Benzekry, Sebastien
Mastri, Michalis
Nicolò, Chiara
Ebos, John M L
description Clinical trials involving systemic neoadjuvant treatments in breast cancer aim to shrink tumors before surgery while simultaneously allowing for controlled evaluation of biomarkers, toxicity, and suppression of distant (occult) metastatic disease. Yet neoadjuvant clinical trials are rarely preceded by preclinical testing involving neoadjuvant treatment, surgery, and post-surgery monitoring of the disease. Here we used a mouse model of spontaneous metastasis occurring after surgical removal of orthotopically implanted primary tumors to develop a predictive mathematical model of neoadjuvant treatment response to sunitinib, a receptor tyrosine kinase inhibitor (RTKI). Treatment outcomes were used to validate a novel mathematical kinetics-pharmacodynamics model predictive of perioperative disease progression. Longitudinal measurements of presurgical primary tumor size and postsurgical metastatic burden were compiled using 128 mice receiving variable neoadjuvant treatment doses and schedules (released publicly at https://zenodo.org/records/10607753). A non-linear mixed-effects modeling approach quantified inter-animal variabilities in metastatic dynamics and survival, and machine-learning algorithms were applied to investigate the significance of several biomarkers at resection as predictors of individual kinetics. Biomarkers included circulating tumor- and immune-based cells (circulating tumor cells and myeloid-derived suppressor cells) as well as immunohistochemical tumor proteins (CD31 and Ki67). Our computational simulations show that neoadjuvant RTKI treatment inhibits primary tumor growth but has little efficacy in preventing (micro)-metastatic disease progression after surgery and treatment cessation. Machine learning algorithms that included support vector machines, random forests, and artificial neural networks, confirmed a lack of definitive biomarkers, which shows the value of preclinical modeling studies to identify potential failures that should be avoided clinically.
doi_str_mv 10.1371/journal.pcbi.1012088
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3069179497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A796130065</galeid><sourcerecordid>A796130065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-1b5bf83a0f70226a3898bdaecd648826efda51d355ea0599896380ebf91157823</originalsourceid><addsrcrecordid>eNqVkktv1DAQxyMEog_4BggicSmHLHa8TuwTqioelQpIPM7WxBnvepXYi-1U8O1x1LTqol6QJXs085u_PeMpiheUrChr6dudn4KDYbXXnV1RQmsixKPimHLOqpZx8fiefVScxLgjJJuyeVocMdESSoQ8LuAz6K11WA0IwVm3KcH15Yh6C87GZHU5-h6HOeBN9ieICWZ3FzCbpQanMZRgUt4deuh30zW4VKYcTyO69Kx4YmCI-Hw5T4ufH97_uPhUXX39eHlxflVpvuapoh3vjGBATEvqugEmpOh6QN03ayHqBk0PnPaMcwTCpcyFMEGwM5JS3oqanRavbnT3g49q6U5UjDSStnIt20y8W4ipG7HX-XEBBrUPdoTwR3mw6jDi7FZt_LWilEjekiYrnC0Kwf-aMCY12qhxGCCXPs2XcSLz5zCS0df_oA8_aaE2MKCyzvh8sZ5F1XkrmyxEGp6p1QNUXj2OVnuHxmb_QcKbg4TMJPydNjDFqC6_f_sP9sshu75hdfAxBjR3zaNEzVN5W6Sap1ItU5nTXt5v_F3S7Riyvx873jM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069179497</pqid></control><display><type>article</type><title>Machine-learning and mechanistic modeling of metastatic breast cancer after neoadjuvant treatment</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Benzekry, Sebastien ; Mastri, Michalis ; Nicolò, Chiara ; Ebos, John M L</creator><contributor>Maini, Philip K.</contributor><creatorcontrib>Benzekry, Sebastien ; Mastri, Michalis ; Nicolò, Chiara ; Ebos, John M L ; Maini, Philip K.</creatorcontrib><description>Clinical trials involving systemic neoadjuvant treatments in breast cancer aim to shrink tumors before surgery while simultaneously allowing for controlled evaluation of biomarkers, toxicity, and suppression of distant (occult) metastatic disease. Yet neoadjuvant clinical trials are rarely preceded by preclinical testing involving neoadjuvant treatment, surgery, and post-surgery monitoring of the disease. Here we used a mouse model of spontaneous metastasis occurring after surgical removal of orthotopically implanted primary tumors to develop a predictive mathematical model of neoadjuvant treatment response to sunitinib, a receptor tyrosine kinase inhibitor (RTKI). Treatment outcomes were used to validate a novel mathematical kinetics-pharmacodynamics model predictive of perioperative disease progression. Longitudinal measurements of presurgical primary tumor size and postsurgical metastatic burden were compiled using 128 mice receiving variable neoadjuvant treatment doses and schedules (released publicly at https://zenodo.org/records/10607753). A non-linear mixed-effects modeling approach quantified inter-animal variabilities in metastatic dynamics and survival, and machine-learning algorithms were applied to investigate the significance of several biomarkers at resection as predictors of individual kinetics. Biomarkers included circulating tumor- and immune-based cells (circulating tumor cells and myeloid-derived suppressor cells) as well as immunohistochemical tumor proteins (CD31 and Ki67). Our computational simulations show that neoadjuvant RTKI treatment inhibits primary tumor growth but has little efficacy in preventing (micro)-metastatic disease progression after surgery and treatment cessation. Machine learning algorithms that included support vector machines, random forests, and artificial neural networks, confirmed a lack of definitive biomarkers, which shows the value of preclinical modeling studies to identify potential failures that should be avoided clinically.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1012088</identifier><identifier>PMID: 38701089</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Angiogenesis ; Animals ; Antibodies ; Antineoplastic Agents - pharmacology ; Antineoplastic Agents - therapeutic use ; Artificial neural networks ; Biology and Life Sciences ; Biomarkers ; Biomarkers, Tumor - metabolism ; Breast cancer ; Breast Neoplasms - drug therapy ; Breast Neoplasms - pathology ; Cancer therapies ; Cell Line, Tumor ; Clinical trials ; Computational Biology ; Drug dosages ; Drug therapy ; Female ; Health services ; Humans ; Kinases ; Kinetics ; Laboratory animals ; Learning algorithms ; Machine Learning ; Mathematical models ; Medicine and Health Sciences ; Metastases ; Metastasis ; Mice ; Models, Biological ; Neoadjuvant therapy ; Neoadjuvant Therapy - methods ; Neoplasm Metastasis ; Neural networks ; Patient outcomes ; Pharmacodynamics ; Protein-tyrosine kinase receptors ; Research and Analysis Methods ; Software ; Sunitinib - pharmacology ; Sunitinib - therapeutic use ; Support vector machines ; Suppressor cells ; Surgery ; Technology application ; Testing ; Toxicity ; Tumor cells ; Tumors ; Tyrosine ; Vascular endothelial growth factor</subject><ispartof>PLoS computational biology, 2024-05, Vol.20 (5), p.e1012088-e1012088</ispartof><rights>Copyright: © 2024 Benzekry et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Benzekry et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Benzekry et al 2024 Benzekry et al</rights><rights>2024 Benzekry et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c545t-1b5bf83a0f70226a3898bdaecd648826efda51d355ea0599896380ebf91157823</cites><orcidid>0000-0002-3749-8637 ; 0000-0002-7175-9044</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11095706/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11095706/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38701089$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Maini, Philip K.</contributor><creatorcontrib>Benzekry, Sebastien</creatorcontrib><creatorcontrib>Mastri, Michalis</creatorcontrib><creatorcontrib>Nicolò, Chiara</creatorcontrib><creatorcontrib>Ebos, John M L</creatorcontrib><title>Machine-learning and mechanistic modeling of metastatic breast cancer after neoadjuvant treatment</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Clinical trials involving systemic neoadjuvant treatments in breast cancer aim to shrink tumors before surgery while simultaneously allowing for controlled evaluation of biomarkers, toxicity, and suppression of distant (occult) metastatic disease. Yet neoadjuvant clinical trials are rarely preceded by preclinical testing involving neoadjuvant treatment, surgery, and post-surgery monitoring of the disease. Here we used a mouse model of spontaneous metastasis occurring after surgical removal of orthotopically implanted primary tumors to develop a predictive mathematical model of neoadjuvant treatment response to sunitinib, a receptor tyrosine kinase inhibitor (RTKI). Treatment outcomes were used to validate a novel mathematical kinetics-pharmacodynamics model predictive of perioperative disease progression. Longitudinal measurements of presurgical primary tumor size and postsurgical metastatic burden were compiled using 128 mice receiving variable neoadjuvant treatment doses and schedules (released publicly at https://zenodo.org/records/10607753). A non-linear mixed-effects modeling approach quantified inter-animal variabilities in metastatic dynamics and survival, and machine-learning algorithms were applied to investigate the significance of several biomarkers at resection as predictors of individual kinetics. Biomarkers included circulating tumor- and immune-based cells (circulating tumor cells and myeloid-derived suppressor cells) as well as immunohistochemical tumor proteins (CD31 and Ki67). Our computational simulations show that neoadjuvant RTKI treatment inhibits primary tumor growth but has little efficacy in preventing (micro)-metastatic disease progression after surgery and treatment cessation. Machine learning algorithms that included support vector machines, random forests, and artificial neural networks, confirmed a lack of definitive biomarkers, which shows the value of preclinical modeling studies to identify potential failures that should be avoided clinically.</description><subject>Algorithms</subject><subject>Angiogenesis</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Artificial neural networks</subject><subject>Biology and Life Sciences</subject><subject>Biomarkers</subject><subject>Biomarkers, Tumor - metabolism</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - drug therapy</subject><subject>Breast Neoplasms - pathology</subject><subject>Cancer therapies</subject><subject>Cell Line, Tumor</subject><subject>Clinical trials</subject><subject>Computational Biology</subject><subject>Drug dosages</subject><subject>Drug therapy</subject><subject>Female</subject><subject>Health services</subject><subject>Humans</subject><subject>Kinases</subject><subject>Kinetics</subject><subject>Laboratory animals</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>Mice</subject><subject>Models, Biological</subject><subject>Neoadjuvant therapy</subject><subject>Neoadjuvant Therapy - methods</subject><subject>Neoplasm Metastasis</subject><subject>Neural networks</subject><subject>Patient outcomes</subject><subject>Pharmacodynamics</subject><subject>Protein-tyrosine kinase receptors</subject><subject>Research and Analysis Methods</subject><subject>Software</subject><subject>Sunitinib - pharmacology</subject><subject>Sunitinib - therapeutic use</subject><subject>Support vector machines</subject><subject>Suppressor cells</subject><subject>Surgery</subject><subject>Technology application</subject><subject>Testing</subject><subject>Toxicity</subject><subject>Tumor cells</subject><subject>Tumors</subject><subject>Tyrosine</subject><subject>Vascular endothelial growth factor</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqVkktv1DAQxyMEog_4BggicSmHLHa8TuwTqioelQpIPM7WxBnvepXYi-1U8O1x1LTqol6QJXs085u_PeMpiheUrChr6dudn4KDYbXXnV1RQmsixKPimHLOqpZx8fiefVScxLgjJJuyeVocMdESSoQ8LuAz6K11WA0IwVm3KcH15Yh6C87GZHU5-h6HOeBN9ieICWZ3FzCbpQanMZRgUt4deuh30zW4VKYcTyO69Kx4YmCI-Hw5T4ufH97_uPhUXX39eHlxflVpvuapoh3vjGBATEvqugEmpOh6QN03ayHqBk0PnPaMcwTCpcyFMEGwM5JS3oqanRavbnT3g49q6U5UjDSStnIt20y8W4ipG7HX-XEBBrUPdoTwR3mw6jDi7FZt_LWilEjekiYrnC0Kwf-aMCY12qhxGCCXPs2XcSLz5zCS0df_oA8_aaE2MKCyzvh8sZ5F1XkrmyxEGp6p1QNUXj2OVnuHxmb_QcKbg4TMJPydNjDFqC6_f_sP9sshu75hdfAxBjR3zaNEzVN5W6Sap1ItU5nTXt5v_F3S7Riyvx873jM</recordid><startdate>20240503</startdate><enddate>20240503</enddate><creator>Benzekry, Sebastien</creator><creator>Mastri, Michalis</creator><creator>Nicolò, Chiara</creator><creator>Ebos, John M L</creator><general>Public Library of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3749-8637</orcidid><orcidid>https://orcid.org/0000-0002-7175-9044</orcidid></search><sort><creationdate>20240503</creationdate><title>Machine-learning and mechanistic modeling of metastatic breast cancer after neoadjuvant treatment</title><author>Benzekry, Sebastien ; Mastri, Michalis ; Nicolò, Chiara ; Ebos, John M L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-1b5bf83a0f70226a3898bdaecd648826efda51d355ea0599896380ebf91157823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Angiogenesis</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Artificial neural networks</topic><topic>Biology and Life Sciences</topic><topic>Biomarkers</topic><topic>Biomarkers, Tumor - metabolism</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - drug therapy</topic><topic>Breast Neoplasms - pathology</topic><topic>Cancer therapies</topic><topic>Cell Line, Tumor</topic><topic>Clinical trials</topic><topic>Computational Biology</topic><topic>Drug dosages</topic><topic>Drug therapy</topic><topic>Female</topic><topic>Health services</topic><topic>Humans</topic><topic>Kinases</topic><topic>Kinetics</topic><topic>Laboratory animals</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>Mice</topic><topic>Models, Biological</topic><topic>Neoadjuvant therapy</topic><topic>Neoadjuvant Therapy - methods</topic><topic>Neoplasm Metastasis</topic><topic>Neural networks</topic><topic>Patient outcomes</topic><topic>Pharmacodynamics</topic><topic>Protein-tyrosine kinase receptors</topic><topic>Research and Analysis Methods</topic><topic>Software</topic><topic>Sunitinib - pharmacology</topic><topic>Sunitinib - therapeutic use</topic><topic>Support vector machines</topic><topic>Suppressor cells</topic><topic>Surgery</topic><topic>Technology application</topic><topic>Testing</topic><topic>Toxicity</topic><topic>Tumor cells</topic><topic>Tumors</topic><topic>Tyrosine</topic><topic>Vascular endothelial growth factor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benzekry, Sebastien</creatorcontrib><creatorcontrib>Mastri, Michalis</creatorcontrib><creatorcontrib>Nicolò, Chiara</creatorcontrib><creatorcontrib>Ebos, John M L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benzekry, Sebastien</au><au>Mastri, Michalis</au><au>Nicolò, Chiara</au><au>Ebos, John M L</au><au>Maini, Philip K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine-learning and mechanistic modeling of metastatic breast cancer after neoadjuvant treatment</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2024-05-03</date><risdate>2024</risdate><volume>20</volume><issue>5</issue><spage>e1012088</spage><epage>e1012088</epage><pages>e1012088-e1012088</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Clinical trials involving systemic neoadjuvant treatments in breast cancer aim to shrink tumors before surgery while simultaneously allowing for controlled evaluation of biomarkers, toxicity, and suppression of distant (occult) metastatic disease. Yet neoadjuvant clinical trials are rarely preceded by preclinical testing involving neoadjuvant treatment, surgery, and post-surgery monitoring of the disease. Here we used a mouse model of spontaneous metastasis occurring after surgical removal of orthotopically implanted primary tumors to develop a predictive mathematical model of neoadjuvant treatment response to sunitinib, a receptor tyrosine kinase inhibitor (RTKI). Treatment outcomes were used to validate a novel mathematical kinetics-pharmacodynamics model predictive of perioperative disease progression. Longitudinal measurements of presurgical primary tumor size and postsurgical metastatic burden were compiled using 128 mice receiving variable neoadjuvant treatment doses and schedules (released publicly at https://zenodo.org/records/10607753). A non-linear mixed-effects modeling approach quantified inter-animal variabilities in metastatic dynamics and survival, and machine-learning algorithms were applied to investigate the significance of several biomarkers at resection as predictors of individual kinetics. Biomarkers included circulating tumor- and immune-based cells (circulating tumor cells and myeloid-derived suppressor cells) as well as immunohistochemical tumor proteins (CD31 and Ki67). Our computational simulations show that neoadjuvant RTKI treatment inhibits primary tumor growth but has little efficacy in preventing (micro)-metastatic disease progression after surgery and treatment cessation. Machine learning algorithms that included support vector machines, random forests, and artificial neural networks, confirmed a lack of definitive biomarkers, which shows the value of preclinical modeling studies to identify potential failures that should be avoided clinically.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>38701089</pmid><doi>10.1371/journal.pcbi.1012088</doi><tpages>e1012088</tpages><orcidid>https://orcid.org/0000-0002-3749-8637</orcidid><orcidid>https://orcid.org/0000-0002-7175-9044</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2024-05, Vol.20 (5), p.e1012088-e1012088
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_3069179497
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Algorithms
Angiogenesis
Animals
Antibodies
Antineoplastic Agents - pharmacology
Antineoplastic Agents - therapeutic use
Artificial neural networks
Biology and Life Sciences
Biomarkers
Biomarkers, Tumor - metabolism
Breast cancer
Breast Neoplasms - drug therapy
Breast Neoplasms - pathology
Cancer therapies
Cell Line, Tumor
Clinical trials
Computational Biology
Drug dosages
Drug therapy
Female
Health services
Humans
Kinases
Kinetics
Laboratory animals
Learning algorithms
Machine Learning
Mathematical models
Medicine and Health Sciences
Metastases
Metastasis
Mice
Models, Biological
Neoadjuvant therapy
Neoadjuvant Therapy - methods
Neoplasm Metastasis
Neural networks
Patient outcomes
Pharmacodynamics
Protein-tyrosine kinase receptors
Research and Analysis Methods
Software
Sunitinib - pharmacology
Sunitinib - therapeutic use
Support vector machines
Suppressor cells
Surgery
Technology application
Testing
Toxicity
Tumor cells
Tumors
Tyrosine
Vascular endothelial growth factor
title Machine-learning and mechanistic modeling of metastatic breast cancer after neoadjuvant treatment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A59%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine-learning%20and%20mechanistic%20modeling%20of%20metastatic%20breast%20cancer%20after%20neoadjuvant%20treatment&rft.jtitle=PLoS%20computational%20biology&rft.au=Benzekry,%20Sebastien&rft.date=2024-05-03&rft.volume=20&rft.issue=5&rft.spage=e1012088&rft.epage=e1012088&rft.pages=e1012088-e1012088&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1012088&rft_dat=%3Cgale_plos_%3EA796130065%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069179497&rft_id=info:pmid/38701089&rft_galeid=A796130065&rfr_iscdi=true