Structural and practical identifiability of contrast transport models for DCE-MRI

Contrast transport models are widely used to quantify blood flow and transport in dynamic contrast-enhanced magnetic resonance imaging. These models analyze the time course of the contrast agent concentration, providing diagnostic and prognostic value for many biological systems. Thus, ensuring accu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2024-05, Vol.20 (5), p.e1012106-e1012106
Hauptverfasser: Conte, Martina, Woodall, Ryan T, Gutova, Margarita, Chen, Bihong T, Shiroishi, Mark S, Brown, Christine E, Munson, Jennifer M, Rockne, Russell C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Contrast transport models are widely used to quantify blood flow and transport in dynamic contrast-enhanced magnetic resonance imaging. These models analyze the time course of the contrast agent concentration, providing diagnostic and prognostic value for many biological systems. Thus, ensuring accuracy and repeatability of the model parameter estimation is a fundamental concern. In this work, we analyze the structural and practical identifiability of a class of nested compartment models pervasively used in analysis of MRI data. We combine artificial and real data to study the role of noise in model parameter estimation. We observe that although all the models are structurally identifiable, practical identifiability strongly depends on the data characteristics. We analyze the impact of increasing data noise on parameter identifiability and show how the latter can be recovered with increased data quality. To complete the analysis, we show that the results do not depend on specific tissue characteristics or the type of enhancement patterns of contrast agent signal.
ISSN:1553-7358
1553-734X
1553-7358
DOI:10.1371/journal.pcbi.1012106