Model design choices impact biological insight: Unpacking the broad landscape of spatial-temporal model development decisions

Computational models enable scientists to understand observed dynamics, uncover rules underlying behaviors, predict experimental outcomes, and generate new hypotheses. There are countless modeling approaches that can be used to characterize biological systems, further multiplied when accounting for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2024-03, Vol.20 (3), p.e1011917-e1011917
Hauptverfasser: Yu, Jessica S, Bagheri, Neda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1011917
container_issue 3
container_start_page e1011917
container_title PLoS computational biology
container_volume 20
creator Yu, Jessica S
Bagheri, Neda
description Computational models enable scientists to understand observed dynamics, uncover rules underlying behaviors, predict experimental outcomes, and generate new hypotheses. There are countless modeling approaches that can be used to characterize biological systems, further multiplied when accounting for the variety of model design choices. Many studies focus on the impact of model parameters on model output and performance; fewer studies investigate the impact of model design choices on biological insight. Here we demonstrate why model design choices should be deliberate and intentional in context of the specific research system and question. In this study, we analyze agnostic and broadly applicable modeling choices at three levels-system, cell, and environment-within the same agent-based modeling framework to interrogate their impact on temporal, spatial, and single-cell emergent dynamics. We identify key considerations when making these modeling choices, including the (i) differences between qualitative vs. quantitative results driven by choices in system representation, (ii) impact of cell-to-cell variability choices on cell-level and temporal trends, and (iii) relationship between emergent outcomes and choices of nutrient dynamics in the environment. This generalizable investigation can help guide the choices made when developing biological models that aim to characterize spatial-temporal dynamics.
doi_str_mv 10.1371/journal.pcbi.1011917
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3069179428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A788368280</galeid><doaj_id>oai_doaj_org_article_511ceaa75c19414aa372f84b517f5a7e</doaj_id><sourcerecordid>A788368280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c583t-35fce05e6eba8fc594b3e37afef34fa75431c9e69bb5ebfae2613ce37bf8d67d3</originalsourceid><addsrcrecordid>eNqVkk9v1DAQxSMEoqXwDRBY4gKHXeJ1HDtcUFXxZ6UCEtCzNXHGWS9OHOJsBQe-O1M2rbqIC8ohI_v33nieJsse83zJheIvt3E39hCWg639kuecV1zdyY65lGKhhNR3b9VH2YOUtnlOZVXez46ELqQqZH6c_foQGwysweTbntlN9BYT890AdmK1jyG23kJgvidgM71iFz1dffN9y6YNsnqM0LAAfZMsDMiiY2mAyUNYTNgNcSRpN3e4xBCHDvuJauuTj316mN1zEBI-mv8n2cXbN1_P3i_OP71bn52eL6zUYloI6SzmEkusQTsrq6IWKBQ4dKJwoGQhuK2wrOpaYu0AVyUXloja6aZUjTjJnu59hxCTmZNLRuQlhVYVK03Eek80EbZmGH0H408TwZs_B3FsDYyTtwGN5NwiUFfLq4IXAEKtnC5qyZWToJC8Xs_ddnWHjaWRKYcD08Ob3m9MGy8NzytZcFmSw_PZYYzfd5gm0_lkMVDQGHfJrIhTqtQrSeizv9B_j7fcUy3QBL53kRpb-hrsvI09Ok_np0prQa46J8GLAwExE_6YWtilZNZfPv8H-_GQLfasHWNKI7qbWHhurvb6-vnmaq_NvNcke3I70hvR9SKL3x0L9-w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069179428</pqid></control><display><type>article</type><title>Model design choices impact biological insight: Unpacking the broad landscape of spatial-temporal model development decisions</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Yu, Jessica S ; Bagheri, Neda</creator><contributor>Mac Gabhann, Feilim</contributor><creatorcontrib>Yu, Jessica S ; Bagheri, Neda ; Mac Gabhann, Feilim</creatorcontrib><description>Computational models enable scientists to understand observed dynamics, uncover rules underlying behaviors, predict experimental outcomes, and generate new hypotheses. There are countless modeling approaches that can be used to characterize biological systems, further multiplied when accounting for the variety of model design choices. Many studies focus on the impact of model parameters on model output and performance; fewer studies investigate the impact of model design choices on biological insight. Here we demonstrate why model design choices should be deliberate and intentional in context of the specific research system and question. In this study, we analyze agnostic and broadly applicable modeling choices at three levels-system, cell, and environment-within the same agent-based modeling framework to interrogate their impact on temporal, spatial, and single-cell emergent dynamics. We identify key considerations when making these modeling choices, including the (i) differences between qualitative vs. quantitative results driven by choices in system representation, (ii) impact of cell-to-cell variability choices on cell-level and temporal trends, and (iii) relationship between emergent outcomes and choices of nutrient dynamics in the environment. This generalizable investigation can help guide the choices made when developing biological models that aim to characterize spatial-temporal dynamics.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1011917</identifier><identifier>PMID: 38457450</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Agent-based models ; Analysis ; Behavior ; Biological models (mathematics) ; Biology and Life Sciences ; Cancer ; Cell cycle ; Computer and Information Sciences ; Computer simulation ; Computer-generated environments ; Design ; Dynamics ; Geometry ; Hypotheses ; Hypothesis testing ; Mathematical models ; Medicine and Health Sciences ; Modelling ; Nutrient dynamics ; Physical Sciences ; Research and Analysis Methods ; Simulation ; Social Sciences ; Spatial analysis (Statistics) ; Symmetry</subject><ispartof>PLoS computational biology, 2024-03, Vol.20 (3), p.e1011917-e1011917</ispartof><rights>Copyright: © 2024 Yu, Bagheri. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Yu, Bagheri. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Yu, Bagheri 2024 Yu, Bagheri</rights><rights>2024 Yu, Bagheri. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c583t-35fce05e6eba8fc594b3e37afef34fa75431c9e69bb5ebfae2613ce37bf8d67d3</cites><orcidid>0000-0003-4464-904X ; 0000-0003-0146-4627</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10954156/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10954156/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38457450$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Mac Gabhann, Feilim</contributor><creatorcontrib>Yu, Jessica S</creatorcontrib><creatorcontrib>Bagheri, Neda</creatorcontrib><title>Model design choices impact biological insight: Unpacking the broad landscape of spatial-temporal model development decisions</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Computational models enable scientists to understand observed dynamics, uncover rules underlying behaviors, predict experimental outcomes, and generate new hypotheses. There are countless modeling approaches that can be used to characterize biological systems, further multiplied when accounting for the variety of model design choices. Many studies focus on the impact of model parameters on model output and performance; fewer studies investigate the impact of model design choices on biological insight. Here we demonstrate why model design choices should be deliberate and intentional in context of the specific research system and question. In this study, we analyze agnostic and broadly applicable modeling choices at three levels-system, cell, and environment-within the same agent-based modeling framework to interrogate their impact on temporal, spatial, and single-cell emergent dynamics. We identify key considerations when making these modeling choices, including the (i) differences between qualitative vs. quantitative results driven by choices in system representation, (ii) impact of cell-to-cell variability choices on cell-level and temporal trends, and (iii) relationship between emergent outcomes and choices of nutrient dynamics in the environment. This generalizable investigation can help guide the choices made when developing biological models that aim to characterize spatial-temporal dynamics.</description><subject>Agent-based models</subject><subject>Analysis</subject><subject>Behavior</subject><subject>Biological models (mathematics)</subject><subject>Biology and Life Sciences</subject><subject>Cancer</subject><subject>Cell cycle</subject><subject>Computer and Information Sciences</subject><subject>Computer simulation</subject><subject>Computer-generated environments</subject><subject>Design</subject><subject>Dynamics</subject><subject>Geometry</subject><subject>Hypotheses</subject><subject>Hypothesis testing</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Modelling</subject><subject>Nutrient dynamics</subject><subject>Physical Sciences</subject><subject>Research and Analysis Methods</subject><subject>Simulation</subject><subject>Social Sciences</subject><subject>Spatial analysis (Statistics)</subject><subject>Symmetry</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk9v1DAQxSMEoqXwDRBY4gKHXeJ1HDtcUFXxZ6UCEtCzNXHGWS9OHOJsBQe-O1M2rbqIC8ohI_v33nieJsse83zJheIvt3E39hCWg639kuecV1zdyY65lGKhhNR3b9VH2YOUtnlOZVXez46ELqQqZH6c_foQGwysweTbntlN9BYT890AdmK1jyG23kJgvidgM71iFz1dffN9y6YNsnqM0LAAfZMsDMiiY2mAyUNYTNgNcSRpN3e4xBCHDvuJauuTj316mN1zEBI-mv8n2cXbN1_P3i_OP71bn52eL6zUYloI6SzmEkusQTsrq6IWKBQ4dKJwoGQhuK2wrOpaYu0AVyUXloja6aZUjTjJnu59hxCTmZNLRuQlhVYVK03Eek80EbZmGH0H408TwZs_B3FsDYyTtwGN5NwiUFfLq4IXAEKtnC5qyZWToJC8Xs_ddnWHjaWRKYcD08Ob3m9MGy8NzytZcFmSw_PZYYzfd5gm0_lkMVDQGHfJrIhTqtQrSeizv9B_j7fcUy3QBL53kRpb-hrsvI09Ok_np0prQa46J8GLAwExE_6YWtilZNZfPv8H-_GQLfasHWNKI7qbWHhurvb6-vnmaq_NvNcke3I70hvR9SKL3x0L9-w</recordid><startdate>20240308</startdate><enddate>20240308</enddate><creator>Yu, Jessica S</creator><creator>Bagheri, Neda</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4464-904X</orcidid><orcidid>https://orcid.org/0000-0003-0146-4627</orcidid></search><sort><creationdate>20240308</creationdate><title>Model design choices impact biological insight: Unpacking the broad landscape of spatial-temporal model development decisions</title><author>Yu, Jessica S ; Bagheri, Neda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c583t-35fce05e6eba8fc594b3e37afef34fa75431c9e69bb5ebfae2613ce37bf8d67d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agent-based models</topic><topic>Analysis</topic><topic>Behavior</topic><topic>Biological models (mathematics)</topic><topic>Biology and Life Sciences</topic><topic>Cancer</topic><topic>Cell cycle</topic><topic>Computer and Information Sciences</topic><topic>Computer simulation</topic><topic>Computer-generated environments</topic><topic>Design</topic><topic>Dynamics</topic><topic>Geometry</topic><topic>Hypotheses</topic><topic>Hypothesis testing</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Modelling</topic><topic>Nutrient dynamics</topic><topic>Physical Sciences</topic><topic>Research and Analysis Methods</topic><topic>Simulation</topic><topic>Social Sciences</topic><topic>Spatial analysis (Statistics)</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Jessica S</creatorcontrib><creatorcontrib>Bagheri, Neda</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Jessica S</au><au>Bagheri, Neda</au><au>Mac Gabhann, Feilim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model design choices impact biological insight: Unpacking the broad landscape of spatial-temporal model development decisions</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2024-03-08</date><risdate>2024</risdate><volume>20</volume><issue>3</issue><spage>e1011917</spage><epage>e1011917</epage><pages>e1011917-e1011917</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Computational models enable scientists to understand observed dynamics, uncover rules underlying behaviors, predict experimental outcomes, and generate new hypotheses. There are countless modeling approaches that can be used to characterize biological systems, further multiplied when accounting for the variety of model design choices. Many studies focus on the impact of model parameters on model output and performance; fewer studies investigate the impact of model design choices on biological insight. Here we demonstrate why model design choices should be deliberate and intentional in context of the specific research system and question. In this study, we analyze agnostic and broadly applicable modeling choices at three levels-system, cell, and environment-within the same agent-based modeling framework to interrogate their impact on temporal, spatial, and single-cell emergent dynamics. We identify key considerations when making these modeling choices, including the (i) differences between qualitative vs. quantitative results driven by choices in system representation, (ii) impact of cell-to-cell variability choices on cell-level and temporal trends, and (iii) relationship between emergent outcomes and choices of nutrient dynamics in the environment. This generalizable investigation can help guide the choices made when developing biological models that aim to characterize spatial-temporal dynamics.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>38457450</pmid><doi>10.1371/journal.pcbi.1011917</doi><tpages>e1011917</tpages><orcidid>https://orcid.org/0000-0003-4464-904X</orcidid><orcidid>https://orcid.org/0000-0003-0146-4627</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2024-03, Vol.20 (3), p.e1011917-e1011917
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_3069179428
source DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Agent-based models
Analysis
Behavior
Biological models (mathematics)
Biology and Life Sciences
Cancer
Cell cycle
Computer and Information Sciences
Computer simulation
Computer-generated environments
Design
Dynamics
Geometry
Hypotheses
Hypothesis testing
Mathematical models
Medicine and Health Sciences
Modelling
Nutrient dynamics
Physical Sciences
Research and Analysis Methods
Simulation
Social Sciences
Spatial analysis (Statistics)
Symmetry
title Model design choices impact biological insight: Unpacking the broad landscape of spatial-temporal model development decisions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A13%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20design%20choices%20impact%20biological%20insight:%20Unpacking%20the%20broad%20landscape%20of%20spatial-temporal%20model%20development%20decisions&rft.jtitle=PLoS%20computational%20biology&rft.au=Yu,%20Jessica%20S&rft.date=2024-03-08&rft.volume=20&rft.issue=3&rft.spage=e1011917&rft.epage=e1011917&rft.pages=e1011917-e1011917&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1011917&rft_dat=%3Cgale_plos_%3EA788368280%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069179428&rft_id=info:pmid/38457450&rft_galeid=A788368280&rft_doaj_id=oai_doaj_org_article_511ceaa75c19414aa372f84b517f5a7e&rfr_iscdi=true