A role for the C. elegans Argonaute protein CSR-1 in small nuclear RNA 3' processing

The Integrator is a multi-subunit protein complex that catalyzes the maturation of snRNA transcripts via 3' cleavage, a step required for snRNA incorporation with snRNP for spliceosome biogenesis. Here we developed a GFP based in vivo snRNA misprocessing reporter as a readout of Integrator func...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2024-05, Vol.20 (5), p.e1011284
Hauptverfasser: Waddell, Brandon M, Wu, Cheng-Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page e1011284
container_title PLoS genetics
container_volume 20
creator Waddell, Brandon M
Wu, Cheng-Wei
description The Integrator is a multi-subunit protein complex that catalyzes the maturation of snRNA transcripts via 3' cleavage, a step required for snRNA incorporation with snRNP for spliceosome biogenesis. Here we developed a GFP based in vivo snRNA misprocessing reporter as a readout of Integrator function and performed a genome-wide RNAi screen for Integrator regulators. We found that loss of the Argonaute encoding csr-1 gene resulted in widespread 3' misprocessing of snRNA transcripts that is accompanied by a significant increase in alternative splicing. Loss of the csr-1 gene down-regulates the germline expression of Integrator subunits 4 and 6 and is accompanied by a reduced protein translation efficiency of multiple Integrator catalytic and non-catalytic subunits. Through isoform and motif mutant analysis, we determined that CSR-1's effect on snRNA processing is dependent on its catalytic slicer activity but does not involve the CSR-1a isoform. Moreover, mRNA-sequencing revealed high similarity in the transcriptome profile between csr-1 and Integrator subunit knockdown via RNAi. Together, our findings reveal CSR-1 as a new regulator of the Integrator complex and implicate a novel role of this Argonaute protein in snRNA 3' processing.
doi_str_mv 10.1371/journal.pgen.1011284
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3069179294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A796130222</galeid><doaj_id>oai_doaj_org_article_38cf34d7c9674b579d7085faf7c61d37</doaj_id><sourcerecordid>A796130222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c620t-6595ec1a173d292986ca3b39e7ad53fe031ec3284ab67097f3171a9e828daf623</originalsourceid><addsrcrecordid>eNqVkk1vEzEQhlcIREvhHyCwhMTHIcFer9frYxTxEalqpbRwtRzveLOVYwfbK8G_x0u2VYN6APng0eh5ZzzjtyheEjwnlJOPN34ITtn5vgM3J5iQsqkeFaeEMTrjFa4e34tPimcx3mBMWSP40-KENryivKGnxfUCBW8BGR9Q2gJazhFY6JSLaBE679SQAO2DT9A7tLxazwjKQdwpa5EbtAUV0Ppigei7kdIQY--658UTo2yEF9N9Vnz7_Ol6-XV2fvlltVycz3Rd4jSrmWCgiSKctqUoRVNrRTdUAFctowYwJaBpHkttao4FN5RwogQ0ZdMqU5f0rHh9qLu3PsppIVFSXAvCc8EqE6sD0Xp1I_eh36nwS3rVyz8JHzqpQurzHJI22tCq5VrUvNowLlqOG2aU4bomLeW51vupW_A_BohJ7vqowVrlwA9jW8YqRqqGZfTNX-jDj5uoTuX-vTM-BaXHonLBRU0oLstxyPkDVD4t7HrtHZg-548EH44EmUnwM3VqiFGurtb_wV78O3v5_Zh9e4_dgrJpG70dUu9dPAarA6iDjzGAufskguXo89vNydHncvJ5lr2aFjxsdtDeiW6NTX8DnAjxlA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069179294</pqid></control><display><type>article</type><title>A role for the C. elegans Argonaute protein CSR-1 in small nuclear RNA 3' processing</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Waddell, Brandon M ; Wu, Cheng-Wei</creator><contributor>Murray, John Isaac</contributor><creatorcontrib>Waddell, Brandon M ; Wu, Cheng-Wei ; Murray, John Isaac</creatorcontrib><description>The Integrator is a multi-subunit protein complex that catalyzes the maturation of snRNA transcripts via 3' cleavage, a step required for snRNA incorporation with snRNP for spliceosome biogenesis. Here we developed a GFP based in vivo snRNA misprocessing reporter as a readout of Integrator function and performed a genome-wide RNAi screen for Integrator regulators. We found that loss of the Argonaute encoding csr-1 gene resulted in widespread 3' misprocessing of snRNA transcripts that is accompanied by a significant increase in alternative splicing. Loss of the csr-1 gene down-regulates the germline expression of Integrator subunits 4 and 6 and is accompanied by a reduced protein translation efficiency of multiple Integrator catalytic and non-catalytic subunits. Through isoform and motif mutant analysis, we determined that CSR-1's effect on snRNA processing is dependent on its catalytic slicer activity but does not involve the CSR-1a isoform. Moreover, mRNA-sequencing revealed high similarity in the transcriptome profile between csr-1 and Integrator subunit knockdown via RNAi. Together, our findings reveal CSR-1 as a new regulator of the Integrator complex and implicate a novel role of this Argonaute protein in snRNA 3' processing.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1011284</identifier><identifier>PMID: 38743783</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Alternative splicing ; Alternative Splicing - genetics ; Analysis ; Animals ; Argonaute Proteins - genetics ; Argonaute Proteins - metabolism ; Caenorhabditis elegans ; Caenorhabditis elegans - genetics ; Caenorhabditis elegans - metabolism ; Caenorhabditis elegans Proteins - genetics ; Caenorhabditis elegans Proteins - metabolism ; Catalytic subunits ; Cloning ; Corporate social responsibility ; Genes ; Genetic aspects ; Genetic transcription ; Genomes ; Genomics ; Identification and classification ; Messenger RNA ; Mutation ; Proteins ; Ribonucleoproteins (small nuclear) ; RNA Interference ; RNA polymerase ; RNA processing ; RNA Processing, Post-Transcriptional ; RNA sequencing ; RNA, Small Nuclear - genetics ; RNA, Small Nuclear - metabolism ; RNA-mediated interference ; snRNA ; Spliceosomes - genetics ; Spliceosomes - metabolism ; Transcriptomes</subject><ispartof>PLoS genetics, 2024-05, Vol.20 (5), p.e1011284</ispartof><rights>Copyright: © 2024 Waddell, Wu. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Waddell, Wu. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Waddell, Wu. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c620t-6595ec1a173d292986ca3b39e7ad53fe031ec3284ab67097f3171a9e828daf623</cites><orcidid>0000-0001-6370-429X ; 0009-0000-7906-7782</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.plos.org/plosone/article/file?id=10.1371/journal.pgen.1011284&amp;type=printable$$EPDF$$P50$$Gplos$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.plos.org/plosone/article?id=10.1371/journal.pgen.1011284$$EHTML$$P50$$Gplos$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,2914,23846,27903,27904,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38743783$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Murray, John Isaac</contributor><creatorcontrib>Waddell, Brandon M</creatorcontrib><creatorcontrib>Wu, Cheng-Wei</creatorcontrib><title>A role for the C. elegans Argonaute protein CSR-1 in small nuclear RNA 3' processing</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>The Integrator is a multi-subunit protein complex that catalyzes the maturation of snRNA transcripts via 3' cleavage, a step required for snRNA incorporation with snRNP for spliceosome biogenesis. Here we developed a GFP based in vivo snRNA misprocessing reporter as a readout of Integrator function and performed a genome-wide RNAi screen for Integrator regulators. We found that loss of the Argonaute encoding csr-1 gene resulted in widespread 3' misprocessing of snRNA transcripts that is accompanied by a significant increase in alternative splicing. Loss of the csr-1 gene down-regulates the germline expression of Integrator subunits 4 and 6 and is accompanied by a reduced protein translation efficiency of multiple Integrator catalytic and non-catalytic subunits. Through isoform and motif mutant analysis, we determined that CSR-1's effect on snRNA processing is dependent on its catalytic slicer activity but does not involve the CSR-1a isoform. Moreover, mRNA-sequencing revealed high similarity in the transcriptome profile between csr-1 and Integrator subunit knockdown via RNAi. Together, our findings reveal CSR-1 as a new regulator of the Integrator complex and implicate a novel role of this Argonaute protein in snRNA 3' processing.</description><subject>Alternative splicing</subject><subject>Alternative Splicing - genetics</subject><subject>Analysis</subject><subject>Animals</subject><subject>Argonaute Proteins - genetics</subject><subject>Argonaute Proteins - metabolism</subject><subject>Caenorhabditis elegans</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>Caenorhabditis elegans Proteins - genetics</subject><subject>Caenorhabditis elegans Proteins - metabolism</subject><subject>Catalytic subunits</subject><subject>Cloning</subject><subject>Corporate social responsibility</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic transcription</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Identification and classification</subject><subject>Messenger RNA</subject><subject>Mutation</subject><subject>Proteins</subject><subject>Ribonucleoproteins (small nuclear)</subject><subject>RNA Interference</subject><subject>RNA polymerase</subject><subject>RNA processing</subject><subject>RNA Processing, Post-Transcriptional</subject><subject>RNA sequencing</subject><subject>RNA, Small Nuclear - genetics</subject><subject>RNA, Small Nuclear - metabolism</subject><subject>RNA-mediated interference</subject><subject>snRNA</subject><subject>Spliceosomes - genetics</subject><subject>Spliceosomes - metabolism</subject><subject>Transcriptomes</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1vEzEQhlcIREvhHyCwhMTHIcFer9frYxTxEalqpbRwtRzveLOVYwfbK8G_x0u2VYN6APng0eh5ZzzjtyheEjwnlJOPN34ITtn5vgM3J5iQsqkeFaeEMTrjFa4e34tPimcx3mBMWSP40-KENryivKGnxfUCBW8BGR9Q2gJazhFY6JSLaBE679SQAO2DT9A7tLxazwjKQdwpa5EbtAUV0Ppigei7kdIQY--658UTo2yEF9N9Vnz7_Ol6-XV2fvlltVycz3Rd4jSrmWCgiSKctqUoRVNrRTdUAFctowYwJaBpHkttao4FN5RwogQ0ZdMqU5f0rHh9qLu3PsppIVFSXAvCc8EqE6sD0Xp1I_eh36nwS3rVyz8JHzqpQurzHJI22tCq5VrUvNowLlqOG2aU4bomLeW51vupW_A_BohJ7vqowVrlwA9jW8YqRqqGZfTNX-jDj5uoTuX-vTM-BaXHonLBRU0oLstxyPkDVD4t7HrtHZg-548EH44EmUnwM3VqiFGurtb_wV78O3v5_Zh9e4_dgrJpG70dUu9dPAarA6iDjzGAufskguXo89vNydHncvJ5lr2aFjxsdtDeiW6NTX8DnAjxlA</recordid><startdate>20240514</startdate><enddate>20240514</enddate><creator>Waddell, Brandon M</creator><creator>Wu, Cheng-Wei</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6370-429X</orcidid><orcidid>https://orcid.org/0009-0000-7906-7782</orcidid></search><sort><creationdate>20240514</creationdate><title>A role for the C. elegans Argonaute protein CSR-1 in small nuclear RNA 3' processing</title><author>Waddell, Brandon M ; Wu, Cheng-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c620t-6595ec1a173d292986ca3b39e7ad53fe031ec3284ab67097f3171a9e828daf623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alternative splicing</topic><topic>Alternative Splicing - genetics</topic><topic>Analysis</topic><topic>Animals</topic><topic>Argonaute Proteins - genetics</topic><topic>Argonaute Proteins - metabolism</topic><topic>Caenorhabditis elegans</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>Caenorhabditis elegans Proteins - genetics</topic><topic>Caenorhabditis elegans Proteins - metabolism</topic><topic>Catalytic subunits</topic><topic>Cloning</topic><topic>Corporate social responsibility</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic transcription</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Identification and classification</topic><topic>Messenger RNA</topic><topic>Mutation</topic><topic>Proteins</topic><topic>Ribonucleoproteins (small nuclear)</topic><topic>RNA Interference</topic><topic>RNA polymerase</topic><topic>RNA processing</topic><topic>RNA Processing, Post-Transcriptional</topic><topic>RNA sequencing</topic><topic>RNA, Small Nuclear - genetics</topic><topic>RNA, Small Nuclear - metabolism</topic><topic>RNA-mediated interference</topic><topic>snRNA</topic><topic>Spliceosomes - genetics</topic><topic>Spliceosomes - metabolism</topic><topic>Transcriptomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Waddell, Brandon M</creatorcontrib><creatorcontrib>Wu, Cheng-Wei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Waddell, Brandon M</au><au>Wu, Cheng-Wei</au><au>Murray, John Isaac</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A role for the C. elegans Argonaute protein CSR-1 in small nuclear RNA 3' processing</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2024-05-14</date><risdate>2024</risdate><volume>20</volume><issue>5</issue><spage>e1011284</spage><pages>e1011284-</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>The Integrator is a multi-subunit protein complex that catalyzes the maturation of snRNA transcripts via 3' cleavage, a step required for snRNA incorporation with snRNP for spliceosome biogenesis. Here we developed a GFP based in vivo snRNA misprocessing reporter as a readout of Integrator function and performed a genome-wide RNAi screen for Integrator regulators. We found that loss of the Argonaute encoding csr-1 gene resulted in widespread 3' misprocessing of snRNA transcripts that is accompanied by a significant increase in alternative splicing. Loss of the csr-1 gene down-regulates the germline expression of Integrator subunits 4 and 6 and is accompanied by a reduced protein translation efficiency of multiple Integrator catalytic and non-catalytic subunits. Through isoform and motif mutant analysis, we determined that CSR-1's effect on snRNA processing is dependent on its catalytic slicer activity but does not involve the CSR-1a isoform. Moreover, mRNA-sequencing revealed high similarity in the transcriptome profile between csr-1 and Integrator subunit knockdown via RNAi. Together, our findings reveal CSR-1 as a new regulator of the Integrator complex and implicate a novel role of this Argonaute protein in snRNA 3' processing.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>38743783</pmid><doi>10.1371/journal.pgen.1011284</doi><tpages>e1011284</tpages><orcidid>https://orcid.org/0000-0001-6370-429X</orcidid><orcidid>https://orcid.org/0009-0000-7906-7782</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2024-05, Vol.20 (5), p.e1011284
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_3069179294
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central
subjects Alternative splicing
Alternative Splicing - genetics
Analysis
Animals
Argonaute Proteins - genetics
Argonaute Proteins - metabolism
Caenorhabditis elegans
Caenorhabditis elegans - genetics
Caenorhabditis elegans - metabolism
Caenorhabditis elegans Proteins - genetics
Caenorhabditis elegans Proteins - metabolism
Catalytic subunits
Cloning
Corporate social responsibility
Genes
Genetic aspects
Genetic transcription
Genomes
Genomics
Identification and classification
Messenger RNA
Mutation
Proteins
Ribonucleoproteins (small nuclear)
RNA Interference
RNA polymerase
RNA processing
RNA Processing, Post-Transcriptional
RNA sequencing
RNA, Small Nuclear - genetics
RNA, Small Nuclear - metabolism
RNA-mediated interference
snRNA
Spliceosomes - genetics
Spliceosomes - metabolism
Transcriptomes
title A role for the C. elegans Argonaute protein CSR-1 in small nuclear RNA 3' processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A47%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20role%20for%20the%20C.%20elegans%20Argonaute%20protein%20CSR-1%20in%20small%20nuclear%20RNA%203'%20processing&rft.jtitle=PLoS%20genetics&rft.au=Waddell,%20Brandon%20M&rft.date=2024-05-14&rft.volume=20&rft.issue=5&rft.spage=e1011284&rft.pages=e1011284-&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1011284&rft_dat=%3Cgale_plos_%3EA796130222%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069179294&rft_id=info:pmid/38743783&rft_galeid=A796130222&rft_doaj_id=oai_doaj_org_article_38cf34d7c9674b579d7085faf7c61d37&rfr_iscdi=true