Checkpoint phosphorylation sites on budding yeast Rif1 protect nascent DNA from degradation by Sgs1-Dna2
In budding yeast the Rif1 protein is important for protecting nascent DNA at blocked replication forks, but the mechanism has been unclear. Here we show that budding yeast Rif1 must interact with Protein Phosphatase 1 to protect nascent DNA. In the absence of Rif1, removal of either Dna2 or Sgs1 pre...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2023-11, Vol.19 (11), p.e1011044-e1011044 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1011044 |
---|---|
container_issue | 11 |
container_start_page | e1011044 |
container_title | PLoS genetics |
container_volume | 19 |
creator | Gali, Vamsi Krishna Monerawela, Chandre Laksir, Yassine Hiraga, Shin-Ichiro Donaldson, Anne D |
description | In budding yeast the Rif1 protein is important for protecting nascent DNA at blocked replication forks, but the mechanism has been unclear. Here we show that budding yeast Rif1 must interact with Protein Phosphatase 1 to protect nascent DNA. In the absence of Rif1, removal of either Dna2 or Sgs1 prevents nascent DNA degradation, implying that Rif1 protects nascent DNA by targeting Protein Phosphatase 1 to oppose degradation by the Sgs1-Dna2 nuclease-helicase complex. This functional role for Rif1 is conserved from yeast to human cells. Yeast Rif1 was previously identified as a target of phosphorylation by the Tel1/Mec1 checkpoint kinases, but the importance of this phosphorylation has been unclear. We find that nascent DNA protection depends on a cluster of Tel1/Mec1 consensus phosphorylation sites in the Rif1 protein sequence, indicating that the intra-S phase checkpoint acts to protect nascent DNA through Rif1 phosphorylation. Our observations uncover the pathway by which budding yeast Rif1 stabilises newly synthesised DNA, highlighting the crucial role Rif1 plays in maintaining genome stability from lower eukaryotes to humans. |
doi_str_mv | 10.1371/journal.pgen.1011044 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3069179228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A775219200</galeid><doaj_id>oai_doaj_org_article_e35fc40f2a2d4015b075ccd3deceb434</doaj_id><sourcerecordid>A775219200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c620t-c7f11a7636d1145b103ef5154747807c083de344558084bf5c623b07d3438c023</originalsourceid><addsrcrecordid>eNqVkl1rFDEUhoMotq7-A9EBQfRi13xOZi6XrR8LpYVWvQ2ZfMymzk7GJAPuvzfrTktXeqGEkEN43vOGkxeAlwguEOHow40fQy-7xdCafoEgQpDSR-AUMUbmnEL6-F59Ap7FeAMhYVXNn4ITwmtWYkRPwWa1MerH4F2fimHjY95h18nkfF9El0wsctGMWru-LXZGxlRcOYuKIfhkVCp6GZXJ2rOLZWGD3xbatEHqQ4NmV1y3Ec3PeomfgydWdtG8mM4Z-Pbp49fVl_n55ef1ank-VyWGaa64RUjykpQaIcoaBImxDDHKKa8gV7Ai2hBKGatgRRvLsow0kGtCSaUgJjPw-tB36HwU05CiILCsEa8xrjKxPhDayxsxBLeVYSe8dOLPhQ-tkCE51RlhCLOKQosl1hQilo2YUjo_QZmGZssZeDe5Bf9zNDGJrcsD6TrZGz9GgauqruuyKve2b_5CH37cRLUy-7ve-hSk2jcVS84ZRjXO3zgDiweovLTZOuV7Y12-PxK8PxJkJplfqZVjjGJ9ffUf7MW_s5ffj9m399iNkV3aRN-N-6jEY5AeQBV8jMHYu09CUOyzfzs5sc--mLKfZa-mAY_N1ug70W3YyW8cA_pR</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069179228</pqid></control><display><type>article</type><title>Checkpoint phosphorylation sites on budding yeast Rif1 protect nascent DNA from degradation by Sgs1-Dna2</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Gali, Vamsi Krishna ; Monerawela, Chandre ; Laksir, Yassine ; Hiraga, Shin-Ichiro ; Donaldson, Anne D</creator><creatorcontrib>Gali, Vamsi Krishna ; Monerawela, Chandre ; Laksir, Yassine ; Hiraga, Shin-Ichiro ; Donaldson, Anne D</creatorcontrib><description>In budding yeast the Rif1 protein is important for protecting nascent DNA at blocked replication forks, but the mechanism has been unclear. Here we show that budding yeast Rif1 must interact with Protein Phosphatase 1 to protect nascent DNA. In the absence of Rif1, removal of either Dna2 or Sgs1 prevents nascent DNA degradation, implying that Rif1 protects nascent DNA by targeting Protein Phosphatase 1 to oppose degradation by the Sgs1-Dna2 nuclease-helicase complex. This functional role for Rif1 is conserved from yeast to human cells. Yeast Rif1 was previously identified as a target of phosphorylation by the Tel1/Mec1 checkpoint kinases, but the importance of this phosphorylation has been unclear. We find that nascent DNA protection depends on a cluster of Tel1/Mec1 consensus phosphorylation sites in the Rif1 protein sequence, indicating that the intra-S phase checkpoint acts to protect nascent DNA through Rif1 phosphorylation. Our observations uncover the pathway by which budding yeast Rif1 stabilises newly synthesised DNA, highlighting the crucial role Rif1 plays in maintaining genome stability from lower eukaryotes to humans.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1011044</identifier><identifier>PMID: 37956214</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino acid sequence ; Binding proteins ; Biodegradation ; Brewer's yeast ; Cell cycle ; Cell Cycle Checkpoints ; Cells ; Chemical properties ; Conserved sequence ; Deoxyribonucleic acid ; DNA ; DNA biosynthesis ; DNA helicase ; DNA Helicases - metabolism ; DNA Replication ; Genetic aspects ; Genetic research ; Genomes ; Genomic Instability ; Genomics ; Kinases ; Nuclease ; Nucleotide sequence ; Phosphatase ; Phosphatases ; Phosphoprotein phosphatase ; Phosphorylation ; Physiological aspects ; Protection and preservation ; Protein phosphatase ; Proteins ; Proteolysis ; Replication forks ; Repressor Proteins - metabolism ; RNA Helicases - metabolism ; S phase ; Saccharomyces cerevisiae - cytology ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - metabolism ; Telomere-Binding Proteins - metabolism ; Yeast</subject><ispartof>PLoS genetics, 2023-11, Vol.19 (11), p.e1011044-e1011044</ispartof><rights>Copyright: © 2023 Gali et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Gali et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c620t-c7f11a7636d1145b103ef5154747807c083de344558084bf5c623b07d3438c023</cites><orcidid>0000-0001-7842-8136</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.plos.org/plosone/article/file?id=10.1371/journal.pgen.1011044&type=printable$$EPDF$$P50$$Gplos$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.plos.org/plosone/article?id=10.1371/journal.pgen.1011044$$EHTML$$P50$$Gplos$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,2915,23845,27901,27902,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37956214$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gali, Vamsi Krishna</creatorcontrib><creatorcontrib>Monerawela, Chandre</creatorcontrib><creatorcontrib>Laksir, Yassine</creatorcontrib><creatorcontrib>Hiraga, Shin-Ichiro</creatorcontrib><creatorcontrib>Donaldson, Anne D</creatorcontrib><title>Checkpoint phosphorylation sites on budding yeast Rif1 protect nascent DNA from degradation by Sgs1-Dna2</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>In budding yeast the Rif1 protein is important for protecting nascent DNA at blocked replication forks, but the mechanism has been unclear. Here we show that budding yeast Rif1 must interact with Protein Phosphatase 1 to protect nascent DNA. In the absence of Rif1, removal of either Dna2 or Sgs1 prevents nascent DNA degradation, implying that Rif1 protects nascent DNA by targeting Protein Phosphatase 1 to oppose degradation by the Sgs1-Dna2 nuclease-helicase complex. This functional role for Rif1 is conserved from yeast to human cells. Yeast Rif1 was previously identified as a target of phosphorylation by the Tel1/Mec1 checkpoint kinases, but the importance of this phosphorylation has been unclear. We find that nascent DNA protection depends on a cluster of Tel1/Mec1 consensus phosphorylation sites in the Rif1 protein sequence, indicating that the intra-S phase checkpoint acts to protect nascent DNA through Rif1 phosphorylation. Our observations uncover the pathway by which budding yeast Rif1 stabilises newly synthesised DNA, highlighting the crucial role Rif1 plays in maintaining genome stability from lower eukaryotes to humans.</description><subject>Amino acid sequence</subject><subject>Binding proteins</subject><subject>Biodegradation</subject><subject>Brewer's yeast</subject><subject>Cell cycle</subject><subject>Cell Cycle Checkpoints</subject><subject>Cells</subject><subject>Chemical properties</subject><subject>Conserved sequence</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA helicase</subject><subject>DNA Helicases - metabolism</subject><subject>DNA Replication</subject><subject>Genetic aspects</subject><subject>Genetic research</subject><subject>Genomes</subject><subject>Genomic Instability</subject><subject>Genomics</subject><subject>Kinases</subject><subject>Nuclease</subject><subject>Nucleotide sequence</subject><subject>Phosphatase</subject><subject>Phosphatases</subject><subject>Phosphoprotein phosphatase</subject><subject>Phosphorylation</subject><subject>Physiological aspects</subject><subject>Protection and preservation</subject><subject>Protein phosphatase</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>Replication forks</subject><subject>Repressor Proteins - metabolism</subject><subject>RNA Helicases - metabolism</subject><subject>S phase</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Telomere-Binding Proteins - metabolism</subject><subject>Yeast</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkl1rFDEUhoMotq7-A9EBQfRi13xOZi6XrR8LpYVWvQ2ZfMymzk7GJAPuvzfrTktXeqGEkEN43vOGkxeAlwguEOHow40fQy-7xdCafoEgQpDSR-AUMUbmnEL6-F59Ap7FeAMhYVXNn4ITwmtWYkRPwWa1MerH4F2fimHjY95h18nkfF9El0wsctGMWru-LXZGxlRcOYuKIfhkVCp6GZXJ2rOLZWGD3xbatEHqQ4NmV1y3Ec3PeomfgydWdtG8mM4Z-Pbp49fVl_n55ef1ank-VyWGaa64RUjykpQaIcoaBImxDDHKKa8gV7Ai2hBKGatgRRvLsow0kGtCSaUgJjPw-tB36HwU05CiILCsEa8xrjKxPhDayxsxBLeVYSe8dOLPhQ-tkCE51RlhCLOKQosl1hQilo2YUjo_QZmGZssZeDe5Bf9zNDGJrcsD6TrZGz9GgauqruuyKve2b_5CH37cRLUy-7ve-hSk2jcVS84ZRjXO3zgDiweovLTZOuV7Y12-PxK8PxJkJplfqZVjjGJ9ffUf7MW_s5ffj9m399iNkV3aRN-N-6jEY5AeQBV8jMHYu09CUOyzfzs5sc--mLKfZa-mAY_N1ug70W3YyW8cA_pR</recordid><startdate>20231113</startdate><enddate>20231113</enddate><creator>Gali, Vamsi Krishna</creator><creator>Monerawela, Chandre</creator><creator>Laksir, Yassine</creator><creator>Hiraga, Shin-Ichiro</creator><creator>Donaldson, Anne D</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7842-8136</orcidid></search><sort><creationdate>20231113</creationdate><title>Checkpoint phosphorylation sites on budding yeast Rif1 protect nascent DNA from degradation by Sgs1-Dna2</title><author>Gali, Vamsi Krishna ; Monerawela, Chandre ; Laksir, Yassine ; Hiraga, Shin-Ichiro ; Donaldson, Anne D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c620t-c7f11a7636d1145b103ef5154747807c083de344558084bf5c623b07d3438c023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amino acid sequence</topic><topic>Binding proteins</topic><topic>Biodegradation</topic><topic>Brewer's yeast</topic><topic>Cell cycle</topic><topic>Cell Cycle Checkpoints</topic><topic>Cells</topic><topic>Chemical properties</topic><topic>Conserved sequence</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA helicase</topic><topic>DNA Helicases - metabolism</topic><topic>DNA Replication</topic><topic>Genetic aspects</topic><topic>Genetic research</topic><topic>Genomes</topic><topic>Genomic Instability</topic><topic>Genomics</topic><topic>Kinases</topic><topic>Nuclease</topic><topic>Nucleotide sequence</topic><topic>Phosphatase</topic><topic>Phosphatases</topic><topic>Phosphoprotein phosphatase</topic><topic>Phosphorylation</topic><topic>Physiological aspects</topic><topic>Protection and preservation</topic><topic>Protein phosphatase</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>Replication forks</topic><topic>Repressor Proteins - metabolism</topic><topic>RNA Helicases - metabolism</topic><topic>S phase</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Telomere-Binding Proteins - metabolism</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gali, Vamsi Krishna</creatorcontrib><creatorcontrib>Monerawela, Chandre</creatorcontrib><creatorcontrib>Laksir, Yassine</creatorcontrib><creatorcontrib>Hiraga, Shin-Ichiro</creatorcontrib><creatorcontrib>Donaldson, Anne D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gali, Vamsi Krishna</au><au>Monerawela, Chandre</au><au>Laksir, Yassine</au><au>Hiraga, Shin-Ichiro</au><au>Donaldson, Anne D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Checkpoint phosphorylation sites on budding yeast Rif1 protect nascent DNA from degradation by Sgs1-Dna2</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2023-11-13</date><risdate>2023</risdate><volume>19</volume><issue>11</issue><spage>e1011044</spage><epage>e1011044</epage><pages>e1011044-e1011044</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>In budding yeast the Rif1 protein is important for protecting nascent DNA at blocked replication forks, but the mechanism has been unclear. Here we show that budding yeast Rif1 must interact with Protein Phosphatase 1 to protect nascent DNA. In the absence of Rif1, removal of either Dna2 or Sgs1 prevents nascent DNA degradation, implying that Rif1 protects nascent DNA by targeting Protein Phosphatase 1 to oppose degradation by the Sgs1-Dna2 nuclease-helicase complex. This functional role for Rif1 is conserved from yeast to human cells. Yeast Rif1 was previously identified as a target of phosphorylation by the Tel1/Mec1 checkpoint kinases, but the importance of this phosphorylation has been unclear. We find that nascent DNA protection depends on a cluster of Tel1/Mec1 consensus phosphorylation sites in the Rif1 protein sequence, indicating that the intra-S phase checkpoint acts to protect nascent DNA through Rif1 phosphorylation. Our observations uncover the pathway by which budding yeast Rif1 stabilises newly synthesised DNA, highlighting the crucial role Rif1 plays in maintaining genome stability from lower eukaryotes to humans.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>37956214</pmid><doi>10.1371/journal.pgen.1011044</doi><tpages>e1011044</tpages><orcidid>https://orcid.org/0000-0001-7842-8136</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2023-11, Vol.19 (11), p.e1011044-e1011044 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_3069179228 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS) |
subjects | Amino acid sequence Binding proteins Biodegradation Brewer's yeast Cell cycle Cell Cycle Checkpoints Cells Chemical properties Conserved sequence Deoxyribonucleic acid DNA DNA biosynthesis DNA helicase DNA Helicases - metabolism DNA Replication Genetic aspects Genetic research Genomes Genomic Instability Genomics Kinases Nuclease Nucleotide sequence Phosphatase Phosphatases Phosphoprotein phosphatase Phosphorylation Physiological aspects Protection and preservation Protein phosphatase Proteins Proteolysis Replication forks Repressor Proteins - metabolism RNA Helicases - metabolism S phase Saccharomyces cerevisiae - cytology Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - metabolism Telomere-Binding Proteins - metabolism Yeast |
title | Checkpoint phosphorylation sites on budding yeast Rif1 protect nascent DNA from degradation by Sgs1-Dna2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T17%3A57%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Checkpoint%20phosphorylation%20sites%20on%20budding%20yeast%20Rif1%20protect%20nascent%20DNA%20from%20degradation%20by%20Sgs1-Dna2&rft.jtitle=PLoS%20genetics&rft.au=Gali,%20Vamsi%20Krishna&rft.date=2023-11-13&rft.volume=19&rft.issue=11&rft.spage=e1011044&rft.epage=e1011044&rft.pages=e1011044-e1011044&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1011044&rft_dat=%3Cgale_plos_%3EA775219200%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069179228&rft_id=info:pmid/37956214&rft_galeid=A775219200&rft_doaj_id=oai_doaj_org_article_e35fc40f2a2d4015b075ccd3deceb434&rfr_iscdi=true |