A machine-learning method for biobank-scale genetic prediction of blood group antigens
A key element for successful blood transfusion is compatibility of the patient and donor red blood cell (RBC) antigens. Precise antigen matching reduces the risk for immunization and other adverse transfusion outcomes. RBC antigens are encoded by specific genes, which allows developing computational...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2024-03, Vol.20 (3), p.e1011977-e1011977 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1011977 |
---|---|
container_issue | 3 |
container_start_page | e1011977 |
container_title | PLoS computational biology |
container_volume | 20 |
creator | Hyvärinen, Kati Haimila, Katri Moslemi, Camous Biobank, Blood Service Olsson, Martin L Ostrowski, Sisse R Pedersen, Ole B Erikstrup, Christian Partanen, Jukka Ritari, Jarmo |
description | A key element for successful blood transfusion is compatibility of the patient and donor red blood cell (RBC) antigens. Precise antigen matching reduces the risk for immunization and other adverse transfusion outcomes. RBC antigens are encoded by specific genes, which allows developing computational methods for determining antigens from genomic data. We describe here a classification method for determining RBC antigens from genotyping array data. Random forest models for 39 RBC antigens in 14 blood group systems and for human platelet antigen (HPA)-1 were trained and tested using genotype and RBC antigen and HPA-1 typing data available for 1,192 blood donors in the Finnish Blood Service Biobank. The algorithm and models were further evaluated using a validation cohort of 111,667 Danish blood donors. In the Finnish test data set, the median (interquartile range [IQR]) balanced accuracy for 39 models was 99.9 (98.9-100)%. We were able to replicate 34 out of 39 Finnish models in the Danish cohort and the median (IQR) balanced accuracy for classifications was 97.1 (90.1-99.4)%. When applying models trained with the Danish cohort, the median (IQR) balanced accuracy for the 40 Danish models in the Danish test data set was 99.3 (95.1-99.8)%. The RBC antigen and HPA-1 prediction models demonstrated high overall accuracies suitable for probabilistic determination of blood groups and HPA-1 at biobank-scale. Furthermore, population-specific training cohort increased the accuracies of the models. This stand-alone and freely available method is applicable for research and screening for antigen-negative blood donors. |
doi_str_mv | 10.1371/journal.pcbi.1011977 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3069178907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A788368189</galeid><doaj_id>oai_doaj_org_article_9bf2af96ac444de7992edcf44801af34</doaj_id><sourcerecordid>A788368189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c680t-ae0301b25d3c881af542f902d2b458c491db9cea782fd07377ee25d7cf2834eb3</originalsourceid><addsrcrecordid>eNqVk12P1CAUhhujcdfRf2C0iTd6MSMUWuDKTDZ-TDLRxK9bAvTQYexAF1o__r3Mzuxmx-yNaUgJfd4HOM0piqcYLTBh-PU2TNGrfjEY7RYYYSwYu1ec47omc0Zqfv_W_Kx4lNIWoTwVzcPijPAaV0Kw8-L7stwps3Ee5j2o6J3vyh2Mm9CWNsRSu6CV_zFPRvVQduBhdKYcIrTOjC74MthS9yHTXQzTUCo_ukylx8UDq_oET47vWfHt3duvFx_m60_vVxfL9dw0HI1zBYggrKu6JYZzrGxNKytQ1Vaa1txQgVstDCjGK9siRhgDyDAztuKEgiaz4vnBO_QhyWNJkiSoEZhxkSOzYnUg2qC2cohup-IfGZSTVwshdlLFfKkepNC2UlY0ylBKW2BCVNAaSylH-WiEZtf64Eq_YJj0ia2fhjx0HjKB5AIrLXgtMautpMIoqXHNpTXGIkE5VwJl3Zvj4Se9yzuBH6PqT6ynX7zbyC78lBgJ3ghBsuHl0RDD5QRplDuXDPS98hCmJCvBKEJNxUVGX_yD3l2tI9Xl_y2dtyFvbPZSuWSck4bjK9fiDio_LeycCR6sy-sngVcngcyM8Hvs1JSSXH35_B_sx1OWHlgTQ0oR7E3xMJL7Lrm-pNx3iTx2SY49u134m9B1W5C_96oNjw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069178907</pqid></control><display><type>article</type><title>A machine-learning method for biobank-scale genetic prediction of blood group antigens</title><source>DOAJ Directory of Open Access Journals</source><source>SWEPUB Freely available online</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Hyvärinen, Kati ; Haimila, Katri ; Moslemi, Camous ; Biobank, Blood Service ; Olsson, Martin L ; Ostrowski, Sisse R ; Pedersen, Ole B ; Erikstrup, Christian ; Partanen, Jukka ; Ritari, Jarmo</creator><contributor>Lu, Yang</contributor><creatorcontrib>Hyvärinen, Kati ; Haimila, Katri ; Moslemi, Camous ; Biobank, Blood Service ; Olsson, Martin L ; Ostrowski, Sisse R ; Pedersen, Ole B ; Erikstrup, Christian ; Partanen, Jukka ; Ritari, Jarmo ; Lu, Yang</creatorcontrib><description>A key element for successful blood transfusion is compatibility of the patient and donor red blood cell (RBC) antigens. Precise antigen matching reduces the risk for immunization and other adverse transfusion outcomes. RBC antigens are encoded by specific genes, which allows developing computational methods for determining antigens from genomic data. We describe here a classification method for determining RBC antigens from genotyping array data. Random forest models for 39 RBC antigens in 14 blood group systems and for human platelet antigen (HPA)-1 were trained and tested using genotype and RBC antigen and HPA-1 typing data available for 1,192 blood donors in the Finnish Blood Service Biobank. The algorithm and models were further evaluated using a validation cohort of 111,667 Danish blood donors. In the Finnish test data set, the median (interquartile range [IQR]) balanced accuracy for 39 models was 99.9 (98.9-100)%. We were able to replicate 34 out of 39 Finnish models in the Danish cohort and the median (IQR) balanced accuracy for classifications was 97.1 (90.1-99.4)%. When applying models trained with the Danish cohort, the median (IQR) balanced accuracy for the 40 Danish models in the Danish test data set was 99.3 (95.1-99.8)%. The RBC antigen and HPA-1 prediction models demonstrated high overall accuracies suitable for probabilistic determination of blood groups and HPA-1 at biobank-scale. Furthermore, population-specific training cohort increased the accuracies of the models. This stand-alone and freely available method is applicable for research and screening for antigen-negative blood donors.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1011977</identifier><identifier>PMID: 38512997</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Algorithms ; Antigens ; Biobanks ; Biology and Life Sciences ; Blood & organ donations ; Blood banks ; Blood donors ; Blood groups ; Blood transfusion ; Classification ; Clinical Medicine ; Computer and Information Sciences ; Datasets ; Erythrocytes ; Forecasts and trends ; Genotype & phenotype ; Genotypes ; Genotyping ; Hematologi ; Hematology ; Immunization ; Klinisk medicin ; Machine learning ; Medical and Health Sciences ; Medicin och hälsovetenskap ; Medicine and Health Sciences ; Methods ; People and Places ; Prediction models ; Research and Analysis Methods ; Risk reduction ; Technology application ; Transfusion</subject><ispartof>PLoS computational biology, 2024-03, Vol.20 (3), p.e1011977-e1011977</ispartof><rights>Copyright: © 2024 Hyvärinen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Hyvärinen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Hyvärinen et al 2024 Hyvärinen et al</rights><rights>2024 Hyvärinen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c680t-ae0301b25d3c881af542f902d2b458c491db9cea782fd07377ee25d7cf2834eb3</cites><orcidid>0000-0001-5288-3851 ; 0000-0001-7905-9774 ; 0000-0001-6681-4734 ; 0000-0003-4605-2837</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10986993/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10986993/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,552,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38512997$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://lup.lub.lu.se/record/891ab985-175f-49ca-b158-fccf09488a90$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Lu, Yang</contributor><creatorcontrib>Hyvärinen, Kati</creatorcontrib><creatorcontrib>Haimila, Katri</creatorcontrib><creatorcontrib>Moslemi, Camous</creatorcontrib><creatorcontrib>Biobank, Blood Service</creatorcontrib><creatorcontrib>Olsson, Martin L</creatorcontrib><creatorcontrib>Ostrowski, Sisse R</creatorcontrib><creatorcontrib>Pedersen, Ole B</creatorcontrib><creatorcontrib>Erikstrup, Christian</creatorcontrib><creatorcontrib>Partanen, Jukka</creatorcontrib><creatorcontrib>Ritari, Jarmo</creatorcontrib><title>A machine-learning method for biobank-scale genetic prediction of blood group antigens</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>A key element for successful blood transfusion is compatibility of the patient and donor red blood cell (RBC) antigens. Precise antigen matching reduces the risk for immunization and other adverse transfusion outcomes. RBC antigens are encoded by specific genes, which allows developing computational methods for determining antigens from genomic data. We describe here a classification method for determining RBC antigens from genotyping array data. Random forest models for 39 RBC antigens in 14 blood group systems and for human platelet antigen (HPA)-1 were trained and tested using genotype and RBC antigen and HPA-1 typing data available for 1,192 blood donors in the Finnish Blood Service Biobank. The algorithm and models were further evaluated using a validation cohort of 111,667 Danish blood donors. In the Finnish test data set, the median (interquartile range [IQR]) balanced accuracy for 39 models was 99.9 (98.9-100)%. We were able to replicate 34 out of 39 Finnish models in the Danish cohort and the median (IQR) balanced accuracy for classifications was 97.1 (90.1-99.4)%. When applying models trained with the Danish cohort, the median (IQR) balanced accuracy for the 40 Danish models in the Danish test data set was 99.3 (95.1-99.8)%. The RBC antigen and HPA-1 prediction models demonstrated high overall accuracies suitable for probabilistic determination of blood groups and HPA-1 at biobank-scale. Furthermore, population-specific training cohort increased the accuracies of the models. This stand-alone and freely available method is applicable for research and screening for antigen-negative blood donors.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Antigens</subject><subject>Biobanks</subject><subject>Biology and Life Sciences</subject><subject>Blood & organ donations</subject><subject>Blood banks</subject><subject>Blood donors</subject><subject>Blood groups</subject><subject>Blood transfusion</subject><subject>Classification</subject><subject>Clinical Medicine</subject><subject>Computer and Information Sciences</subject><subject>Datasets</subject><subject>Erythrocytes</subject><subject>Forecasts and trends</subject><subject>Genotype & phenotype</subject><subject>Genotypes</subject><subject>Genotyping</subject><subject>Hematologi</subject><subject>Hematology</subject><subject>Immunization</subject><subject>Klinisk medicin</subject><subject>Machine learning</subject><subject>Medical and Health Sciences</subject><subject>Medicin och hälsovetenskap</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>People and Places</subject><subject>Prediction models</subject><subject>Research and Analysis Methods</subject><subject>Risk reduction</subject><subject>Technology application</subject><subject>Transfusion</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNqVk12P1CAUhhujcdfRf2C0iTd6MSMUWuDKTDZ-TDLRxK9bAvTQYexAF1o__r3Mzuxmx-yNaUgJfd4HOM0piqcYLTBh-PU2TNGrfjEY7RYYYSwYu1ec47omc0Zqfv_W_Kx4lNIWoTwVzcPijPAaV0Kw8-L7stwps3Ee5j2o6J3vyh2Mm9CWNsRSu6CV_zFPRvVQduBhdKYcIrTOjC74MthS9yHTXQzTUCo_ukylx8UDq_oET47vWfHt3duvFx_m60_vVxfL9dw0HI1zBYggrKu6JYZzrGxNKytQ1Vaa1txQgVstDCjGK9siRhgDyDAztuKEgiaz4vnBO_QhyWNJkiSoEZhxkSOzYnUg2qC2cohup-IfGZSTVwshdlLFfKkepNC2UlY0ylBKW2BCVNAaSylH-WiEZtf64Eq_YJj0ia2fhjx0HjKB5AIrLXgtMautpMIoqXHNpTXGIkE5VwJl3Zvj4Se9yzuBH6PqT6ynX7zbyC78lBgJ3ghBsuHl0RDD5QRplDuXDPS98hCmJCvBKEJNxUVGX_yD3l2tI9Xl_y2dtyFvbPZSuWSck4bjK9fiDio_LeycCR6sy-sngVcngcyM8Hvs1JSSXH35_B_sx1OWHlgTQ0oR7E3xMJL7Lrm-pNx3iTx2SY49u134m9B1W5C_96oNjw</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Hyvärinen, Kati</creator><creator>Haimila, Katri</creator><creator>Moslemi, Camous</creator><creator>Biobank, Blood Service</creator><creator>Olsson, Martin L</creator><creator>Ostrowski, Sisse R</creator><creator>Pedersen, Ole B</creator><creator>Erikstrup, Christian</creator><creator>Partanen, Jukka</creator><creator>Ritari, Jarmo</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AGCHP</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D95</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5288-3851</orcidid><orcidid>https://orcid.org/0000-0001-7905-9774</orcidid><orcidid>https://orcid.org/0000-0001-6681-4734</orcidid><orcidid>https://orcid.org/0000-0003-4605-2837</orcidid></search><sort><creationdate>20240301</creationdate><title>A machine-learning method for biobank-scale genetic prediction of blood group antigens</title><author>Hyvärinen, Kati ; Haimila, Katri ; Moslemi, Camous ; Biobank, Blood Service ; Olsson, Martin L ; Ostrowski, Sisse R ; Pedersen, Ole B ; Erikstrup, Christian ; Partanen, Jukka ; Ritari, Jarmo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c680t-ae0301b25d3c881af542f902d2b458c491db9cea782fd07377ee25d7cf2834eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Antigens</topic><topic>Biobanks</topic><topic>Biology and Life Sciences</topic><topic>Blood & organ donations</topic><topic>Blood banks</topic><topic>Blood donors</topic><topic>Blood groups</topic><topic>Blood transfusion</topic><topic>Classification</topic><topic>Clinical Medicine</topic><topic>Computer and Information Sciences</topic><topic>Datasets</topic><topic>Erythrocytes</topic><topic>Forecasts and trends</topic><topic>Genotype & phenotype</topic><topic>Genotypes</topic><topic>Genotyping</topic><topic>Hematologi</topic><topic>Hematology</topic><topic>Immunization</topic><topic>Klinisk medicin</topic><topic>Machine learning</topic><topic>Medical and Health Sciences</topic><topic>Medicin och hälsovetenskap</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>People and Places</topic><topic>Prediction models</topic><topic>Research and Analysis Methods</topic><topic>Risk reduction</topic><topic>Technology application</topic><topic>Transfusion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hyvärinen, Kati</creatorcontrib><creatorcontrib>Haimila, Katri</creatorcontrib><creatorcontrib>Moslemi, Camous</creatorcontrib><creatorcontrib>Biobank, Blood Service</creatorcontrib><creatorcontrib>Olsson, Martin L</creatorcontrib><creatorcontrib>Ostrowski, Sisse R</creatorcontrib><creatorcontrib>Pedersen, Ole B</creatorcontrib><creatorcontrib>Erikstrup, Christian</creatorcontrib><creatorcontrib>Partanen, Jukka</creatorcontrib><creatorcontrib>Ritari, Jarmo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SWEPUB Lunds universitet full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Lunds universitet</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hyvärinen, Kati</au><au>Haimila, Katri</au><au>Moslemi, Camous</au><au>Biobank, Blood Service</au><au>Olsson, Martin L</au><au>Ostrowski, Sisse R</au><au>Pedersen, Ole B</au><au>Erikstrup, Christian</au><au>Partanen, Jukka</au><au>Ritari, Jarmo</au><au>Lu, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A machine-learning method for biobank-scale genetic prediction of blood group antigens</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>20</volume><issue>3</issue><spage>e1011977</spage><epage>e1011977</epage><pages>e1011977-e1011977</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>A key element for successful blood transfusion is compatibility of the patient and donor red blood cell (RBC) antigens. Precise antigen matching reduces the risk for immunization and other adverse transfusion outcomes. RBC antigens are encoded by specific genes, which allows developing computational methods for determining antigens from genomic data. We describe here a classification method for determining RBC antigens from genotyping array data. Random forest models for 39 RBC antigens in 14 blood group systems and for human platelet antigen (HPA)-1 were trained and tested using genotype and RBC antigen and HPA-1 typing data available for 1,192 blood donors in the Finnish Blood Service Biobank. The algorithm and models were further evaluated using a validation cohort of 111,667 Danish blood donors. In the Finnish test data set, the median (interquartile range [IQR]) balanced accuracy for 39 models was 99.9 (98.9-100)%. We were able to replicate 34 out of 39 Finnish models in the Danish cohort and the median (IQR) balanced accuracy for classifications was 97.1 (90.1-99.4)%. When applying models trained with the Danish cohort, the median (IQR) balanced accuracy for the 40 Danish models in the Danish test data set was 99.3 (95.1-99.8)%. The RBC antigen and HPA-1 prediction models demonstrated high overall accuracies suitable for probabilistic determination of blood groups and HPA-1 at biobank-scale. Furthermore, population-specific training cohort increased the accuracies of the models. This stand-alone and freely available method is applicable for research and screening for antigen-negative blood donors.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>38512997</pmid><doi>10.1371/journal.pcbi.1011977</doi><tpages>e1011977</tpages><orcidid>https://orcid.org/0000-0001-5288-3851</orcidid><orcidid>https://orcid.org/0000-0001-7905-9774</orcidid><orcidid>https://orcid.org/0000-0001-6681-4734</orcidid><orcidid>https://orcid.org/0000-0003-4605-2837</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2024-03, Vol.20 (3), p.e1011977-e1011977 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_3069178907 |
source | DOAJ Directory of Open Access Journals; SWEPUB Freely available online; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Accuracy Algorithms Antigens Biobanks Biology and Life Sciences Blood & organ donations Blood banks Blood donors Blood groups Blood transfusion Classification Clinical Medicine Computer and Information Sciences Datasets Erythrocytes Forecasts and trends Genotype & phenotype Genotypes Genotyping Hematologi Hematology Immunization Klinisk medicin Machine learning Medical and Health Sciences Medicin och hälsovetenskap Medicine and Health Sciences Methods People and Places Prediction models Research and Analysis Methods Risk reduction Technology application Transfusion |
title | A machine-learning method for biobank-scale genetic prediction of blood group antigens |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A10%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20machine-learning%20method%20for%20biobank-scale%20genetic%20prediction%20of%20blood%20group%20antigens&rft.jtitle=PLoS%20computational%20biology&rft.au=Hyv%C3%A4rinen,%20Kati&rft.date=2024-03-01&rft.volume=20&rft.issue=3&rft.spage=e1011977&rft.epage=e1011977&rft.pages=e1011977-e1011977&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1011977&rft_dat=%3Cgale_plos_%3EA788368189%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069178907&rft_id=info:pmid/38512997&rft_galeid=A788368189&rft_doaj_id=oai_doaj_org_article_9bf2af96ac444de7992edcf44801af34&rfr_iscdi=true |