Differential adhesion during development establishes individual neural stem cell niches and shapes adult behaviour in Drosophila

Neural stem cells (NSCs) reside in a defined cellular microenvironment, the niche, which supports the generation and integration of newborn neurons. The mechanisms building a sophisticated niche structure around NSCs and their functional relevance for neurogenesis are yet to be understood. In the Dr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS biology 2023-11, Vol.21 (11), p.e3002352-e3002352
Hauptverfasser: Banach-Latapy, Agata, Rincheval, Vincent, Briand, David, Guénal, Isabelle, Spéder, Pauline
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e3002352
container_issue 11
container_start_page e3002352
container_title PLoS biology
container_volume 21
creator Banach-Latapy, Agata
Rincheval, Vincent
Briand, David
Guénal, Isabelle
Spéder, Pauline
description Neural stem cells (NSCs) reside in a defined cellular microenvironment, the niche, which supports the generation and integration of newborn neurons. The mechanisms building a sophisticated niche structure around NSCs and their functional relevance for neurogenesis are yet to be understood. In the Drosophila larval brain, the cortex glia (CG) encase individual NSC lineages in membranous chambers, organising the stem cell population and newborn neurons into a stereotypic structure. We first found that CG wrap around lineage-related cells regardless of their identity, showing that lineage information builds CG architecture. We then discovered that a mechanism of temporally controlled differential adhesion using conserved complexes supports the individual encasing of NSC lineages. An intralineage adhesion through homophilic Neuroglian interactions provides strong binding between cells of a same lineage, while a weaker interaction through Neurexin-IV and Wrapper exists between NSC lineages and CG. Loss of Neuroglian results in NSC lineages clumped together and in an altered CG network, while loss of Neurexin-IV/Wrapper generates larger yet defined CG chamber grouping several lineages together. Axonal projections of newborn neurons are also altered in these conditions. Further, we link the loss of these 2 adhesion complexes specifically during development to locomotor hyperactivity in the resulting adults. Altogether, our findings identify a belt of adhesions building a neurogenic niche at the scale of individual stem cell and provide the proof of concept that niche properties during development shape adult behaviour.
doi_str_mv 10.1371/journal.pbio.3002352
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3069176993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A776048988</galeid><doaj_id>oai_doaj_org_article_68aeba8ed2e643e5a016d92db460e56a</doaj_id><sourcerecordid>A776048988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c730t-3211b22690a14f2051acf7afbf137bca9d3ca0bc6838661088dfc67a7c641aa23</originalsourceid><addsrcrecordid>eNqVk0tv1DAUhSMEomXgHyCIxIYuZvAjcZwVGrVARxpRidfWurGdiUeZOI2TEez46dwwadWpugBlYev6O8fOsW8UvaRkQXlG32390DVQL9rC-QUnhPGUPYpOaZqk80zK9PGd-Un0LIQtMixn8ml0wrM84VLy0-j3hStL29mmd1DHYCobnG9iM3Su2cTG7m3t2x0uxzb0UNQuIBG7xri9MwNKGjt0OITe7mJtayw4PSLQmDhU0I5TM9R9XNgK9g4Pjer4ovPBt5Wr4Xn0pIQ62BfTOIu-f_zw7fxyvr76tDpfruc646Sfc0ZpwZjICdCkZCSloMsMyqLEMAoNueEaSKGF5FIISqQ0pRYZZFokFIDxWfT64NvWPqgpvKA4ETnNRJ5zJFYHwnjYqrZzO-h-KQ9O_S34bqOg652urRISbAHSGmZFwm0KhAqTM1MkgthUAHq9n3Ybip01GgPElI5Mj1caV6mN3ytKBE_TVKDD2cGhuqe7XK7VWCMJyxMhxJ4i-3barfPXA16U2rkwXgY01g9BMSlzxiXPEkTf3EMfjmKiNoB_65rS4yH1aKqWWSZIInN8PbNo8QCFn7E7p31jS4f1I8HZkQCZ3v7sNzCEoFZfv_wH-_nf2asfx2xyYDU-wdDZ8jZcStTYWDeBqLGx1NRYKHt190JvRTedxP8A2WUflg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069176993</pqid></control><display><type>article</type><title>Differential adhesion during development establishes individual neural stem cell niches and shapes adult behaviour in Drosophila</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Banach-Latapy, Agata ; Rincheval, Vincent ; Briand, David ; Guénal, Isabelle ; Spéder, Pauline</creator><contributor>Ye, Bing</contributor><creatorcontrib>Banach-Latapy, Agata ; Rincheval, Vincent ; Briand, David ; Guénal, Isabelle ; Spéder, Pauline ; Ye, Bing</creatorcontrib><description>Neural stem cells (NSCs) reside in a defined cellular microenvironment, the niche, which supports the generation and integration of newborn neurons. The mechanisms building a sophisticated niche structure around NSCs and their functional relevance for neurogenesis are yet to be understood. In the Drosophila larval brain, the cortex glia (CG) encase individual NSC lineages in membranous chambers, organising the stem cell population and newborn neurons into a stereotypic structure. We first found that CG wrap around lineage-related cells regardless of their identity, showing that lineage information builds CG architecture. We then discovered that a mechanism of temporally controlled differential adhesion using conserved complexes supports the individual encasing of NSC lineages. An intralineage adhesion through homophilic Neuroglian interactions provides strong binding between cells of a same lineage, while a weaker interaction through Neurexin-IV and Wrapper exists between NSC lineages and CG. Loss of Neuroglian results in NSC lineages clumped together and in an altered CG network, while loss of Neurexin-IV/Wrapper generates larger yet defined CG chamber grouping several lineages together. Axonal projections of newborn neurons are also altered in these conditions. Further, we link the loss of these 2 adhesion complexes specifically during development to locomotor hyperactivity in the resulting adults. Altogether, our findings identify a belt of adhesions building a neurogenic niche at the scale of individual stem cell and provide the proof of concept that niche properties during development shape adult behaviour.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.3002352</identifier><identifier>PMID: 37943883</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adhesion ; Analysis ; Animals ; Behavior ; Biology and Life Sciences ; Brain ; Cell adhesion ; Development Biology ; Drosophila ; Fruit flies ; Growth ; Hyperactivity ; Insects ; Life Sciences ; Localization ; Microenvironments ; Nervous system ; Neural stem cells ; Neural Stem Cells - metabolism ; Neurogenesis ; Neurogenesis - physiology ; Neuroglia - physiology ; Neurons ; Neurons - metabolism ; Physical Sciences ; Research and Analysis Methods ; Stem Cell Niche - physiology ; Stem cells</subject><ispartof>PLoS biology, 2023-11, Vol.21 (11), p.e3002352-e3002352</ispartof><rights>Copyright: © 2023 Banach-Latapy et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Banach-Latapy et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><rights>2023 Banach-Latapy et al 2023 Banach-Latapy et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c730t-3211b22690a14f2051acf7afbf137bca9d3ca0bc6838661088dfc67a7c641aa23</citedby><cites>FETCH-LOGICAL-c730t-3211b22690a14f2051acf7afbf137bca9d3ca0bc6838661088dfc67a7c641aa23</cites><orcidid>0000-0002-2934-5841 ; 0000-0003-1186-1458</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635556/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635556/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,2098,2917,23849,27907,27908,53774,53776,79351,79352</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37943883$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04294666$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Ye, Bing</contributor><creatorcontrib>Banach-Latapy, Agata</creatorcontrib><creatorcontrib>Rincheval, Vincent</creatorcontrib><creatorcontrib>Briand, David</creatorcontrib><creatorcontrib>Guénal, Isabelle</creatorcontrib><creatorcontrib>Spéder, Pauline</creatorcontrib><title>Differential adhesion during development establishes individual neural stem cell niches and shapes adult behaviour in Drosophila</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>Neural stem cells (NSCs) reside in a defined cellular microenvironment, the niche, which supports the generation and integration of newborn neurons. The mechanisms building a sophisticated niche structure around NSCs and their functional relevance for neurogenesis are yet to be understood. In the Drosophila larval brain, the cortex glia (CG) encase individual NSC lineages in membranous chambers, organising the stem cell population and newborn neurons into a stereotypic structure. We first found that CG wrap around lineage-related cells regardless of their identity, showing that lineage information builds CG architecture. We then discovered that a mechanism of temporally controlled differential adhesion using conserved complexes supports the individual encasing of NSC lineages. An intralineage adhesion through homophilic Neuroglian interactions provides strong binding between cells of a same lineage, while a weaker interaction through Neurexin-IV and Wrapper exists between NSC lineages and CG. Loss of Neuroglian results in NSC lineages clumped together and in an altered CG network, while loss of Neurexin-IV/Wrapper generates larger yet defined CG chamber grouping several lineages together. Axonal projections of newborn neurons are also altered in these conditions. Further, we link the loss of these 2 adhesion complexes specifically during development to locomotor hyperactivity in the resulting adults. Altogether, our findings identify a belt of adhesions building a neurogenic niche at the scale of individual stem cell and provide the proof of concept that niche properties during development shape adult behaviour.</description><subject>Adhesion</subject><subject>Analysis</subject><subject>Animals</subject><subject>Behavior</subject><subject>Biology and Life Sciences</subject><subject>Brain</subject><subject>Cell adhesion</subject><subject>Development Biology</subject><subject>Drosophila</subject><subject>Fruit flies</subject><subject>Growth</subject><subject>Hyperactivity</subject><subject>Insects</subject><subject>Life Sciences</subject><subject>Localization</subject><subject>Microenvironments</subject><subject>Nervous system</subject><subject>Neural stem cells</subject><subject>Neural Stem Cells - metabolism</subject><subject>Neurogenesis</subject><subject>Neurogenesis - physiology</subject><subject>Neuroglia - physiology</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Physical Sciences</subject><subject>Research and Analysis Methods</subject><subject>Stem Cell Niche - physiology</subject><subject>Stem cells</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk0tv1DAUhSMEomXgHyCIxIYuZvAjcZwVGrVARxpRidfWurGdiUeZOI2TEez46dwwadWpugBlYev6O8fOsW8UvaRkQXlG32390DVQL9rC-QUnhPGUPYpOaZqk80zK9PGd-Un0LIQtMixn8ml0wrM84VLy0-j3hStL29mmd1DHYCobnG9iM3Su2cTG7m3t2x0uxzb0UNQuIBG7xri9MwNKGjt0OITe7mJtayw4PSLQmDhU0I5TM9R9XNgK9g4Pjer4ovPBt5Wr4Xn0pIQ62BfTOIu-f_zw7fxyvr76tDpfruc646Sfc0ZpwZjICdCkZCSloMsMyqLEMAoNueEaSKGF5FIISqQ0pRYZZFokFIDxWfT64NvWPqgpvKA4ETnNRJ5zJFYHwnjYqrZzO-h-KQ9O_S34bqOg652urRISbAHSGmZFwm0KhAqTM1MkgthUAHq9n3Ybip01GgPElI5Mj1caV6mN3ytKBE_TVKDD2cGhuqe7XK7VWCMJyxMhxJ4i-3barfPXA16U2rkwXgY01g9BMSlzxiXPEkTf3EMfjmKiNoB_65rS4yH1aKqWWSZIInN8PbNo8QCFn7E7p31jS4f1I8HZkQCZ3v7sNzCEoFZfv_wH-_nf2asfx2xyYDU-wdDZ8jZcStTYWDeBqLGx1NRYKHt190JvRTedxP8A2WUflg</recordid><startdate>20231109</startdate><enddate>20231109</enddate><creator>Banach-Latapy, Agata</creator><creator>Rincheval, Vincent</creator><creator>Briand, David</creator><creator>Guénal, Isabelle</creator><creator>Spéder, Pauline</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0002-2934-5841</orcidid><orcidid>https://orcid.org/0000-0003-1186-1458</orcidid></search><sort><creationdate>20231109</creationdate><title>Differential adhesion during development establishes individual neural stem cell niches and shapes adult behaviour in Drosophila</title><author>Banach-Latapy, Agata ; Rincheval, Vincent ; Briand, David ; Guénal, Isabelle ; Spéder, Pauline</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c730t-3211b22690a14f2051acf7afbf137bca9d3ca0bc6838661088dfc67a7c641aa23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adhesion</topic><topic>Analysis</topic><topic>Animals</topic><topic>Behavior</topic><topic>Biology and Life Sciences</topic><topic>Brain</topic><topic>Cell adhesion</topic><topic>Development Biology</topic><topic>Drosophila</topic><topic>Fruit flies</topic><topic>Growth</topic><topic>Hyperactivity</topic><topic>Insects</topic><topic>Life Sciences</topic><topic>Localization</topic><topic>Microenvironments</topic><topic>Nervous system</topic><topic>Neural stem cells</topic><topic>Neural Stem Cells - metabolism</topic><topic>Neurogenesis</topic><topic>Neurogenesis - physiology</topic><topic>Neuroglia - physiology</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Physical Sciences</topic><topic>Research and Analysis Methods</topic><topic>Stem Cell Niche - physiology</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banach-Latapy, Agata</creatorcontrib><creatorcontrib>Rincheval, Vincent</creatorcontrib><creatorcontrib>Briand, David</creatorcontrib><creatorcontrib>Guénal, Isabelle</creatorcontrib><creatorcontrib>Spéder, Pauline</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banach-Latapy, Agata</au><au>Rincheval, Vincent</au><au>Briand, David</au><au>Guénal, Isabelle</au><au>Spéder, Pauline</au><au>Ye, Bing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential adhesion during development establishes individual neural stem cell niches and shapes adult behaviour in Drosophila</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2023-11-09</date><risdate>2023</risdate><volume>21</volume><issue>11</issue><spage>e3002352</spage><epage>e3002352</epage><pages>e3002352-e3002352</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>Neural stem cells (NSCs) reside in a defined cellular microenvironment, the niche, which supports the generation and integration of newborn neurons. The mechanisms building a sophisticated niche structure around NSCs and their functional relevance for neurogenesis are yet to be understood. In the Drosophila larval brain, the cortex glia (CG) encase individual NSC lineages in membranous chambers, organising the stem cell population and newborn neurons into a stereotypic structure. We first found that CG wrap around lineage-related cells regardless of their identity, showing that lineage information builds CG architecture. We then discovered that a mechanism of temporally controlled differential adhesion using conserved complexes supports the individual encasing of NSC lineages. An intralineage adhesion through homophilic Neuroglian interactions provides strong binding between cells of a same lineage, while a weaker interaction through Neurexin-IV and Wrapper exists between NSC lineages and CG. Loss of Neuroglian results in NSC lineages clumped together and in an altered CG network, while loss of Neurexin-IV/Wrapper generates larger yet defined CG chamber grouping several lineages together. Axonal projections of newborn neurons are also altered in these conditions. Further, we link the loss of these 2 adhesion complexes specifically during development to locomotor hyperactivity in the resulting adults. Altogether, our findings identify a belt of adhesions building a neurogenic niche at the scale of individual stem cell and provide the proof of concept that niche properties during development shape adult behaviour.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>37943883</pmid><doi>10.1371/journal.pbio.3002352</doi><orcidid>https://orcid.org/0000-0002-2934-5841</orcidid><orcidid>https://orcid.org/0000-0003-1186-1458</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-7885
ispartof PLoS biology, 2023-11, Vol.21 (11), p.e3002352-e3002352
issn 1545-7885
1544-9173
1545-7885
language eng
recordid cdi_plos_journals_3069176993
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central
subjects Adhesion
Analysis
Animals
Behavior
Biology and Life Sciences
Brain
Cell adhesion
Development Biology
Drosophila
Fruit flies
Growth
Hyperactivity
Insects
Life Sciences
Localization
Microenvironments
Nervous system
Neural stem cells
Neural Stem Cells - metabolism
Neurogenesis
Neurogenesis - physiology
Neuroglia - physiology
Neurons
Neurons - metabolism
Physical Sciences
Research and Analysis Methods
Stem Cell Niche - physiology
Stem cells
title Differential adhesion during development establishes individual neural stem cell niches and shapes adult behaviour in Drosophila
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A06%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20adhesion%20during%20development%20establishes%20individual%20neural%20stem%20cell%20niches%20and%20shapes%20adult%20behaviour%20in%20Drosophila&rft.jtitle=PLoS%20biology&rft.au=Banach-Latapy,%20Agata&rft.date=2023-11-09&rft.volume=21&rft.issue=11&rft.spage=e3002352&rft.epage=e3002352&rft.pages=e3002352-e3002352&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.3002352&rft_dat=%3Cgale_plos_%3EA776048988%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069176993&rft_id=info:pmid/37943883&rft_galeid=A776048988&rft_doaj_id=oai_doaj_org_article_68aeba8ed2e643e5a016d92db460e56a&rfr_iscdi=true