Ploidy evolution in a wild yeast is linked to an interaction between cell type and metabolism
Ploidy is an evolutionarily labile trait, and its variation across the tree of life has profound impacts on evolutionary trajectories and life histories. The immediate consequences and molecular causes of ploidy variation on organismal fitness are frequently less clear, although extreme mating type...
Gespeichert in:
Veröffentlicht in: | PLoS biology 2023-11, Vol.21 (11), p.e3001909-e3001909 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e3001909 |
---|---|
container_issue | 11 |
container_start_page | e3001909 |
container_title | PLoS biology |
container_volume | 21 |
creator | Crandall, Johnathan G Fisher, Kaitlin J Sato, Trey K Hittinger, Chris Todd |
description | Ploidy is an evolutionarily labile trait, and its variation across the tree of life has profound impacts on evolutionary trajectories and life histories. The immediate consequences and molecular causes of ploidy variation on organismal fitness are frequently less clear, although extreme mating type skews in some fungi hint at links between cell type and adaptive traits. Here, we report an unusual recurrent ploidy reduction in replicate populations of the budding yeast Saccharomyces eubayanus experimentally evolved for improvement of a key metabolic trait, the ability to use maltose as a carbon source. We find that haploids have a substantial, but conditional, fitness advantage in the absence of other genetic variation. Using engineered genotypes that decouple the effects of ploidy and cell type, we show that increased fitness is primarily due to the distinct transcriptional program deployed by haploid-like cell types, with a significant but smaller contribution from absolute ploidy. The link between cell-type specification and the carbon metabolism adaptation can be traced to the noncanonical regulation of a maltose transporter by a haploid-specific gene. This study provides novel mechanistic insight into the molecular basis of an environment-cell type fitness interaction and illustrates how selection on traits unexpectedly linked to ploidy states or cell types can drive karyotypic evolution in fungi. |
doi_str_mv | 10.1371/journal.pbio.3001909 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3069176935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A776048980</galeid><doaj_id>oai_doaj_org_article_bb8585d8f9a449eab9af9f27d185412a</doaj_id><sourcerecordid>A776048980</sourcerecordid><originalsourceid>FETCH-LOGICAL-c672t-fc19b59b881cb401f57c9eef9fa17d9abdfc167a2b1ecde051098baace004bf53</originalsourceid><addsrcrecordid>eNqVk01v1DAQhiMEoqXwDxBEcIHDLrZjx_apqio-Vqoo4uuGLNuZbF2ceIm9Lfvvcbpp1UU9gHywNfPMO-MZTVE8xWiOK47fnIf10Gs_XxkX5hVCWCJ5r9jHjLIZF4Ldv_XeKx7FeI4QIZKIh8VexSWtOEX7xY9PPrhmU8JF8OvkQl-6vtTlpfNNuQEdU-li6V3_E5oyhVKP_gSDtlesgXQJ0JcWvC_TZgUZaMoOkjbBu9g9Lh602kd4Mt0Hxbd3b78ef5idnL5fHB-dzGzNSZq1FkvDpBECW0MRbhm3EqCVrca8kdo0mai5JgaDbQAxjKQwWltAiJqWVQfF863uyoeops5EVaFaYl7LaiQWW6IJ-lytBtfpYaOCdurKEIal0kNy1oMyRjDBGtFKTakEbaTOlRDeYMEoJjprHU7Z1qaDxkKfBu13RHc9vTtTy3ChMKorRiuaFV5sFUJMTkXrEtgzG_oebFKEIEYoz9CrKc0Qfq0hJtW5OHZa9xDWUREhJKlEXZGMvvwLvbsHE7XU-Zuub0Ouzo6i6ojzGlEhBcrU_A4qnwY6l2uE1mX7TsDrnYDMJPidlnodo1p8-fwf7Md_Z0-_77J0y9ohxDhAezMNjNS4LtcNUeO6qGldctiz25O8Cbrej-oPs9AQaA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069176935</pqid></control><display><type>article</type><title>Ploidy evolution in a wild yeast is linked to an interaction between cell type and metabolism</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Crandall, Johnathan G ; Fisher, Kaitlin J ; Sato, Trey K ; Hittinger, Chris Todd</creator><contributor>Zanders, Sarah E.</contributor><creatorcontrib>Crandall, Johnathan G ; Fisher, Kaitlin J ; Sato, Trey K ; Hittinger, Chris Todd ; Zanders, Sarah E.</creatorcontrib><description>Ploidy is an evolutionarily labile trait, and its variation across the tree of life has profound impacts on evolutionary trajectories and life histories. The immediate consequences and molecular causes of ploidy variation on organismal fitness are frequently less clear, although extreme mating type skews in some fungi hint at links between cell type and adaptive traits. Here, we report an unusual recurrent ploidy reduction in replicate populations of the budding yeast Saccharomyces eubayanus experimentally evolved for improvement of a key metabolic trait, the ability to use maltose as a carbon source. We find that haploids have a substantial, but conditional, fitness advantage in the absence of other genetic variation. Using engineered genotypes that decouple the effects of ploidy and cell type, we show that increased fitness is primarily due to the distinct transcriptional program deployed by haploid-like cell types, with a significant but smaller contribution from absolute ploidy. The link between cell-type specification and the carbon metabolism adaptation can be traced to the noncanonical regulation of a maltose transporter by a haploid-specific gene. This study provides novel mechanistic insight into the molecular basis of an environment-cell type fitness interaction and illustrates how selection on traits unexpectedly linked to ploidy states or cell types can drive karyotypic evolution in fungi.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.3001909</identifier><identifier>PMID: 37943740</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptation ; Analysis ; Biology and Life Sciences ; Carbon ; Carbon sources ; Cell metabolism ; Cells ; Cloning ; Evolution ; Evolution & development ; Fitness ; Fungi ; Genes ; Genetic aspects ; Genetic diversity ; Genomes ; Genomics ; Genotypes ; Haploidy ; Identification and classification ; Maltose ; Metabolism ; Mutation ; Phenotype ; Physical Sciences ; Ploidy ; Reproductive fitness ; Research and Analysis Methods ; Saccharomyces cerevisiae - genetics ; Yeast ; Yeast fungi ; Yeasts</subject><ispartof>PLoS biology, 2023-11, Vol.21 (11), p.e3001909-e3001909</ispartof><rights>Copyright: © 2023 Crandall et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Crandall et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Crandall et al 2023 Crandall et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c672t-fc19b59b881cb401f57c9eef9fa17d9abdfc167a2b1ecde051098baace004bf53</cites><orcidid>0000-0001-5088-7461 ; 0000000150887461</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635434/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635434/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37943740$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2205247$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><contributor>Zanders, Sarah E.</contributor><creatorcontrib>Crandall, Johnathan G</creatorcontrib><creatorcontrib>Fisher, Kaitlin J</creatorcontrib><creatorcontrib>Sato, Trey K</creatorcontrib><creatorcontrib>Hittinger, Chris Todd</creatorcontrib><title>Ploidy evolution in a wild yeast is linked to an interaction between cell type and metabolism</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>Ploidy is an evolutionarily labile trait, and its variation across the tree of life has profound impacts on evolutionary trajectories and life histories. The immediate consequences and molecular causes of ploidy variation on organismal fitness are frequently less clear, although extreme mating type skews in some fungi hint at links between cell type and adaptive traits. Here, we report an unusual recurrent ploidy reduction in replicate populations of the budding yeast Saccharomyces eubayanus experimentally evolved for improvement of a key metabolic trait, the ability to use maltose as a carbon source. We find that haploids have a substantial, but conditional, fitness advantage in the absence of other genetic variation. Using engineered genotypes that decouple the effects of ploidy and cell type, we show that increased fitness is primarily due to the distinct transcriptional program deployed by haploid-like cell types, with a significant but smaller contribution from absolute ploidy. The link between cell-type specification and the carbon metabolism adaptation can be traced to the noncanonical regulation of a maltose transporter by a haploid-specific gene. This study provides novel mechanistic insight into the molecular basis of an environment-cell type fitness interaction and illustrates how selection on traits unexpectedly linked to ploidy states or cell types can drive karyotypic evolution in fungi.</description><subject>Adaptation</subject><subject>Analysis</subject><subject>Biology and Life Sciences</subject><subject>Carbon</subject><subject>Carbon sources</subject><subject>Cell metabolism</subject><subject>Cells</subject><subject>Cloning</subject><subject>Evolution</subject><subject>Evolution & development</subject><subject>Fitness</subject><subject>Fungi</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic diversity</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotypes</subject><subject>Haploidy</subject><subject>Identification and classification</subject><subject>Maltose</subject><subject>Metabolism</subject><subject>Mutation</subject><subject>Phenotype</subject><subject>Physical Sciences</subject><subject>Ploidy</subject><subject>Reproductive fitness</subject><subject>Research and Analysis Methods</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Yeast</subject><subject>Yeast fungi</subject><subject>Yeasts</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVk01v1DAQhiMEoqXwDxBEcIHDLrZjx_apqio-Vqoo4uuGLNuZbF2ceIm9Lfvvcbpp1UU9gHywNfPMO-MZTVE8xWiOK47fnIf10Gs_XxkX5hVCWCJ5r9jHjLIZF4Ldv_XeKx7FeI4QIZKIh8VexSWtOEX7xY9PPrhmU8JF8OvkQl-6vtTlpfNNuQEdU-li6V3_E5oyhVKP_gSDtlesgXQJ0JcWvC_TZgUZaMoOkjbBu9g9Lh602kd4Mt0Hxbd3b78ef5idnL5fHB-dzGzNSZq1FkvDpBECW0MRbhm3EqCVrca8kdo0mai5JgaDbQAxjKQwWltAiJqWVQfF863uyoeops5EVaFaYl7LaiQWW6IJ-lytBtfpYaOCdurKEIal0kNy1oMyRjDBGtFKTakEbaTOlRDeYMEoJjprHU7Z1qaDxkKfBu13RHc9vTtTy3ChMKorRiuaFV5sFUJMTkXrEtgzG_oebFKEIEYoz9CrKc0Qfq0hJtW5OHZa9xDWUREhJKlEXZGMvvwLvbsHE7XU-Zuub0Ouzo6i6ojzGlEhBcrU_A4qnwY6l2uE1mX7TsDrnYDMJPidlnodo1p8-fwf7Md_Z0-_77J0y9ohxDhAezMNjNS4LtcNUeO6qGldctiz25O8Cbrej-oPs9AQaA</recordid><startdate>20231109</startdate><enddate>20231109</enddate><creator>Crandall, Johnathan G</creator><creator>Fisher, Kaitlin J</creator><creator>Sato, Trey K</creator><creator>Hittinger, Chris Todd</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0001-5088-7461</orcidid><orcidid>https://orcid.org/0000000150887461</orcidid></search><sort><creationdate>20231109</creationdate><title>Ploidy evolution in a wild yeast is linked to an interaction between cell type and metabolism</title><author>Crandall, Johnathan G ; Fisher, Kaitlin J ; Sato, Trey K ; Hittinger, Chris Todd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c672t-fc19b59b881cb401f57c9eef9fa17d9abdfc167a2b1ecde051098baace004bf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation</topic><topic>Analysis</topic><topic>Biology and Life Sciences</topic><topic>Carbon</topic><topic>Carbon sources</topic><topic>Cell metabolism</topic><topic>Cells</topic><topic>Cloning</topic><topic>Evolution</topic><topic>Evolution & development</topic><topic>Fitness</topic><topic>Fungi</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic diversity</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotypes</topic><topic>Haploidy</topic><topic>Identification and classification</topic><topic>Maltose</topic><topic>Metabolism</topic><topic>Mutation</topic><topic>Phenotype</topic><topic>Physical Sciences</topic><topic>Ploidy</topic><topic>Reproductive fitness</topic><topic>Research and Analysis Methods</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Yeast</topic><topic>Yeast fungi</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crandall, Johnathan G</creatorcontrib><creatorcontrib>Fisher, Kaitlin J</creatorcontrib><creatorcontrib>Sato, Trey K</creatorcontrib><creatorcontrib>Hittinger, Chris Todd</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crandall, Johnathan G</au><au>Fisher, Kaitlin J</au><au>Sato, Trey K</au><au>Hittinger, Chris Todd</au><au>Zanders, Sarah E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ploidy evolution in a wild yeast is linked to an interaction between cell type and metabolism</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2023-11-09</date><risdate>2023</risdate><volume>21</volume><issue>11</issue><spage>e3001909</spage><epage>e3001909</epage><pages>e3001909-e3001909</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>Ploidy is an evolutionarily labile trait, and its variation across the tree of life has profound impacts on evolutionary trajectories and life histories. The immediate consequences and molecular causes of ploidy variation on organismal fitness are frequently less clear, although extreme mating type skews in some fungi hint at links between cell type and adaptive traits. Here, we report an unusual recurrent ploidy reduction in replicate populations of the budding yeast Saccharomyces eubayanus experimentally evolved for improvement of a key metabolic trait, the ability to use maltose as a carbon source. We find that haploids have a substantial, but conditional, fitness advantage in the absence of other genetic variation. Using engineered genotypes that decouple the effects of ploidy and cell type, we show that increased fitness is primarily due to the distinct transcriptional program deployed by haploid-like cell types, with a significant but smaller contribution from absolute ploidy. The link between cell-type specification and the carbon metabolism adaptation can be traced to the noncanonical regulation of a maltose transporter by a haploid-specific gene. This study provides novel mechanistic insight into the molecular basis of an environment-cell type fitness interaction and illustrates how selection on traits unexpectedly linked to ploidy states or cell types can drive karyotypic evolution in fungi.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>37943740</pmid><doi>10.1371/journal.pbio.3001909</doi><orcidid>https://orcid.org/0000-0001-5088-7461</orcidid><orcidid>https://orcid.org/0000000150887461</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-7885 |
ispartof | PLoS biology, 2023-11, Vol.21 (11), p.e3001909-e3001909 |
issn | 1545-7885 1544-9173 1545-7885 |
language | eng |
recordid | cdi_plos_journals_3069176935 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS) |
subjects | Adaptation Analysis Biology and Life Sciences Carbon Carbon sources Cell metabolism Cells Cloning Evolution Evolution & development Fitness Fungi Genes Genetic aspects Genetic diversity Genomes Genomics Genotypes Haploidy Identification and classification Maltose Metabolism Mutation Phenotype Physical Sciences Ploidy Reproductive fitness Research and Analysis Methods Saccharomyces cerevisiae - genetics Yeast Yeast fungi Yeasts |
title | Ploidy evolution in a wild yeast is linked to an interaction between cell type and metabolism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A06%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ploidy%20evolution%20in%20a%20wild%20yeast%20is%20linked%20to%20an%20interaction%20between%20cell%20type%20and%20metabolism&rft.jtitle=PLoS%20biology&rft.au=Crandall,%20Johnathan%20G&rft.date=2023-11-09&rft.volume=21&rft.issue=11&rft.spage=e3001909&rft.epage=e3001909&rft.pages=e3001909-e3001909&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.3001909&rft_dat=%3Cgale_plos_%3EA776048980%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069176935&rft_id=info:pmid/37943740&rft_galeid=A776048980&rft_doaj_id=oai_doaj_org_article_bb8585d8f9a449eab9af9f27d185412a&rfr_iscdi=true |