Hyperglycemia increases SCO-spondin and Wnt5a secretion into the cerebrospinal fluid to regulate ependymal cell beating and glucose sensing
Hyperglycemia increases glucose concentrations in the cerebrospinal fluid (CSF), activating glucose-sensing mechanisms and feeding behavior in the hypothalamus. Here, we discuss how hyperglycemia temporarily modifies ependymal cell ciliary beating to increase hypothalamic glucose sensing. A high lev...
Gespeichert in:
Veröffentlicht in: | PLoS biology 2023-09, Vol.21 (9), p.e3002308-e3002308 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e3002308 |
---|---|
container_issue | 9 |
container_start_page | e3002308 |
container_title | PLoS biology |
container_volume | 21 |
creator | Nualart, Francisco Cifuentes, Manuel Ramírez, Eder Martínez, Fernando Barahona, María José Ferrada, Luciano Saldivia, Natalia Bongarzone, Ernesto R Thorens, Bernard Salazar, Katterine |
description | Hyperglycemia increases glucose concentrations in the cerebrospinal fluid (CSF), activating glucose-sensing mechanisms and feeding behavior in the hypothalamus. Here, we discuss how hyperglycemia temporarily modifies ependymal cell ciliary beating to increase hypothalamic glucose sensing. A high level of glucose in the rat CSF stimulates glucose transporter 2 (GLUT2)-positive subcommissural organ (SCO) cells to release SCO-spondin into the dorsal third ventricle. Genetic inactivation of mice GLUT2 decreases hyperglycemia-induced SCO-spondin secretion. In addition, SCO cells secrete Wnt5a-positive vesicles; thus, Wnt5a and SCO-spondin are found at the apex of dorsal ependymal cilia to regulate ciliary beating. Frizzled-2 and ROR2 receptors, as well as specific proteoglycans, such as glypican/testican (essential for the interaction of Wnt5a with its receptors) and Cx43 coupling, were also analyzed in ependymal cells. Finally, we propose that the SCO-spondin/Wnt5a/Frizzled-2/Cx43 axis in ependymal cells regulates ciliary beating, a cyclic and adaptive signaling mechanism to control glucose sensing. |
doi_str_mv | 10.1371/journal.pbio.3002308 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3069169191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A767828143</galeid><doaj_id>oai_doaj_org_article_d108a0932339447eaf5226b30d4a66f4</doaj_id><sourcerecordid>A767828143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c673t-353de3efc641f712db79d89243b0272aebdcb27cafe57654aba210b0e7fc10243</originalsourceid><addsrcrecordid>eNqVk9-L1DAQx4soeJ7-B4IFX_Rh1_xom_ZJjkW9hcMFzx-PYZpMe1m6SU1Scf8G_2mzt1VcuQclgYSZz3wnM2Sy7CklS8oFfbV1k7cwLMfWuCUnhHFS38vOaFmUC1HX5f0_7g-zRyFsE8MaVp9lPy73I_p-2CvcGciNVR4hYMivV5tFGJ3VxuZgdf7FxhLygMkfjbOJjC6PN5gr9Nh6F0aTnpB3w2R0nlwe-2mAiDmOaPV-l3wKhyFvEaKx_a1mP0zKBUyqNiTb4-xBB0PAJ_N5nn16--bj6nJxtXm3Xl1cLVQleFzwkmvk2KmqoJ2gTLei0XXDCt4SJhhgq1XLhIIOS1GVBbTAKGkJik5RkrDz7NlRdxxckHPzguSkamjaDU3E-khoB1s5erMDv5cOjLw1ON9L8NGoAaWmpAbScMZ5UxQCoSsZq1pOdAFV1R2yvZ6zTe0OtUIbPQwnoqcea25k775JSkrKWc2SwotZwbuvE4YodyYcmgkW3RQkq6uaMip4ldDnf6F3lzdTPaQKjO1cSqwOovJCVKJmNS14opZ3UGnp9FWUs9iZZD8JeHkSkJiI32MPUwhyff3hP9j3_85uPp-yxZFV6UsGj93vRlMiD8PyqyHyMCxyHhb-Ezu1CNg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069169191</pqid></control><display><type>article</type><title>Hyperglycemia increases SCO-spondin and Wnt5a secretion into the cerebrospinal fluid to regulate ependymal cell beating and glucose sensing</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Nualart, Francisco ; Cifuentes, Manuel ; Ramírez, Eder ; Martínez, Fernando ; Barahona, María José ; Ferrada, Luciano ; Saldivia, Natalia ; Bongarzone, Ernesto R ; Thorens, Bernard ; Salazar, Katterine</creator><contributor>Daneman, Richard</contributor><creatorcontrib>Nualart, Francisco ; Cifuentes, Manuel ; Ramírez, Eder ; Martínez, Fernando ; Barahona, María José ; Ferrada, Luciano ; Saldivia, Natalia ; Bongarzone, Ernesto R ; Thorens, Bernard ; Salazar, Katterine ; Daneman, Richard</creatorcontrib><description>Hyperglycemia increases glucose concentrations in the cerebrospinal fluid (CSF), activating glucose-sensing mechanisms and feeding behavior in the hypothalamus. Here, we discuss how hyperglycemia temporarily modifies ependymal cell ciliary beating to increase hypothalamic glucose sensing. A high level of glucose in the rat CSF stimulates glucose transporter 2 (GLUT2)-positive subcommissural organ (SCO) cells to release SCO-spondin into the dorsal third ventricle. Genetic inactivation of mice GLUT2 decreases hyperglycemia-induced SCO-spondin secretion. In addition, SCO cells secrete Wnt5a-positive vesicles; thus, Wnt5a and SCO-spondin are found at the apex of dorsal ependymal cilia to regulate ciliary beating. Frizzled-2 and ROR2 receptors, as well as specific proteoglycans, such as glypican/testican (essential for the interaction of Wnt5a with its receptors) and Cx43 coupling, were also analyzed in ependymal cells. Finally, we propose that the SCO-spondin/Wnt5a/Frizzled-2/Cx43 axis in ependymal cells regulates ciliary beating, a cyclic and adaptive signaling mechanism to control glucose sensing.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.3002308</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Analysis ; Biology and Life Sciences ; Cerebrospinal fluid ; Chemoreception ; Cilia ; Connexin 43 ; Dextrose ; Endoplasmic reticulum ; Ependymal cells ; Feeding behavior ; Frizzled protein ; Glucose ; Glucose transporter ; Glycoproteins ; Heparan sulfate proteoglycans ; Hyperglycemia ; Hypothalamus ; Inactivation ; Independent sample ; Kinases ; Medicine and Health Sciences ; Morphogenesis ; Physical Sciences ; Proteoglycans ; Quantitative analysis ; Receptors ; Research and Analysis Methods ; Secretion ; Subcommissural organ ; Ventricle ; Ventricles (cerebral) ; Wnt protein</subject><ispartof>PLoS biology, 2023-09, Vol.21 (9), p.e3002308-e3002308</ispartof><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Nualart et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Nualart et al 2023 Nualart et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c673t-353de3efc641f712db79d89243b0272aebdcb27cafe57654aba210b0e7fc10243</citedby><cites>FETCH-LOGICAL-c673t-353de3efc641f712db79d89243b0272aebdcb27cafe57654aba210b0e7fc10243</cites><orcidid>0000-0002-7762-1417 ; 0000-0003-1414-469X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10513282/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10513282/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids></links><search><contributor>Daneman, Richard</contributor><creatorcontrib>Nualart, Francisco</creatorcontrib><creatorcontrib>Cifuentes, Manuel</creatorcontrib><creatorcontrib>Ramírez, Eder</creatorcontrib><creatorcontrib>Martínez, Fernando</creatorcontrib><creatorcontrib>Barahona, María José</creatorcontrib><creatorcontrib>Ferrada, Luciano</creatorcontrib><creatorcontrib>Saldivia, Natalia</creatorcontrib><creatorcontrib>Bongarzone, Ernesto R</creatorcontrib><creatorcontrib>Thorens, Bernard</creatorcontrib><creatorcontrib>Salazar, Katterine</creatorcontrib><title>Hyperglycemia increases SCO-spondin and Wnt5a secretion into the cerebrospinal fluid to regulate ependymal cell beating and glucose sensing</title><title>PLoS biology</title><description>Hyperglycemia increases glucose concentrations in the cerebrospinal fluid (CSF), activating glucose-sensing mechanisms and feeding behavior in the hypothalamus. Here, we discuss how hyperglycemia temporarily modifies ependymal cell ciliary beating to increase hypothalamic glucose sensing. A high level of glucose in the rat CSF stimulates glucose transporter 2 (GLUT2)-positive subcommissural organ (SCO) cells to release SCO-spondin into the dorsal third ventricle. Genetic inactivation of mice GLUT2 decreases hyperglycemia-induced SCO-spondin secretion. In addition, SCO cells secrete Wnt5a-positive vesicles; thus, Wnt5a and SCO-spondin are found at the apex of dorsal ependymal cilia to regulate ciliary beating. Frizzled-2 and ROR2 receptors, as well as specific proteoglycans, such as glypican/testican (essential for the interaction of Wnt5a with its receptors) and Cx43 coupling, were also analyzed in ependymal cells. Finally, we propose that the SCO-spondin/Wnt5a/Frizzled-2/Cx43 axis in ependymal cells regulates ciliary beating, a cyclic and adaptive signaling mechanism to control glucose sensing.</description><subject>Analysis</subject><subject>Biology and Life Sciences</subject><subject>Cerebrospinal fluid</subject><subject>Chemoreception</subject><subject>Cilia</subject><subject>Connexin 43</subject><subject>Dextrose</subject><subject>Endoplasmic reticulum</subject><subject>Ependymal cells</subject><subject>Feeding behavior</subject><subject>Frizzled protein</subject><subject>Glucose</subject><subject>Glucose transporter</subject><subject>Glycoproteins</subject><subject>Heparan sulfate proteoglycans</subject><subject>Hyperglycemia</subject><subject>Hypothalamus</subject><subject>Inactivation</subject><subject>Independent sample</subject><subject>Kinases</subject><subject>Medicine and Health Sciences</subject><subject>Morphogenesis</subject><subject>Physical Sciences</subject><subject>Proteoglycans</subject><subject>Quantitative analysis</subject><subject>Receptors</subject><subject>Research and Analysis Methods</subject><subject>Secretion</subject><subject>Subcommissural organ</subject><subject>Ventricle</subject><subject>Ventricles (cerebral)</subject><subject>Wnt protein</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVk9-L1DAQx4soeJ7-B4IFX_Rh1_xom_ZJjkW9hcMFzx-PYZpMe1m6SU1Scf8G_2mzt1VcuQclgYSZz3wnM2Sy7CklS8oFfbV1k7cwLMfWuCUnhHFS38vOaFmUC1HX5f0_7g-zRyFsE8MaVp9lPy73I_p-2CvcGciNVR4hYMivV5tFGJ3VxuZgdf7FxhLygMkfjbOJjC6PN5gr9Nh6F0aTnpB3w2R0nlwe-2mAiDmOaPV-l3wKhyFvEaKx_a1mP0zKBUyqNiTb4-xBB0PAJ_N5nn16--bj6nJxtXm3Xl1cLVQleFzwkmvk2KmqoJ2gTLei0XXDCt4SJhhgq1XLhIIOS1GVBbTAKGkJik5RkrDz7NlRdxxckHPzguSkamjaDU3E-khoB1s5erMDv5cOjLw1ON9L8NGoAaWmpAbScMZ5UxQCoSsZq1pOdAFV1R2yvZ6zTe0OtUIbPQwnoqcea25k775JSkrKWc2SwotZwbuvE4YodyYcmgkW3RQkq6uaMip4ldDnf6F3lzdTPaQKjO1cSqwOovJCVKJmNS14opZ3UGnp9FWUs9iZZD8JeHkSkJiI32MPUwhyff3hP9j3_85uPp-yxZFV6UsGj93vRlMiD8PyqyHyMCxyHhb-Ezu1CNg</recordid><startdate>20230921</startdate><enddate>20230921</enddate><creator>Nualart, Francisco</creator><creator>Cifuentes, Manuel</creator><creator>Ramírez, Eder</creator><creator>Martínez, Fernando</creator><creator>Barahona, María José</creator><creator>Ferrada, Luciano</creator><creator>Saldivia, Natalia</creator><creator>Bongarzone, Ernesto R</creator><creator>Thorens, Bernard</creator><creator>Salazar, Katterine</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0002-7762-1417</orcidid><orcidid>https://orcid.org/0000-0003-1414-469X</orcidid></search><sort><creationdate>20230921</creationdate><title>Hyperglycemia increases SCO-spondin and Wnt5a secretion into the cerebrospinal fluid to regulate ependymal cell beating and glucose sensing</title><author>Nualart, Francisco ; Cifuentes, Manuel ; Ramírez, Eder ; Martínez, Fernando ; Barahona, María José ; Ferrada, Luciano ; Saldivia, Natalia ; Bongarzone, Ernesto R ; Thorens, Bernard ; Salazar, Katterine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c673t-353de3efc641f712db79d89243b0272aebdcb27cafe57654aba210b0e7fc10243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Biology and Life Sciences</topic><topic>Cerebrospinal fluid</topic><topic>Chemoreception</topic><topic>Cilia</topic><topic>Connexin 43</topic><topic>Dextrose</topic><topic>Endoplasmic reticulum</topic><topic>Ependymal cells</topic><topic>Feeding behavior</topic><topic>Frizzled protein</topic><topic>Glucose</topic><topic>Glucose transporter</topic><topic>Glycoproteins</topic><topic>Heparan sulfate proteoglycans</topic><topic>Hyperglycemia</topic><topic>Hypothalamus</topic><topic>Inactivation</topic><topic>Independent sample</topic><topic>Kinases</topic><topic>Medicine and Health Sciences</topic><topic>Morphogenesis</topic><topic>Physical Sciences</topic><topic>Proteoglycans</topic><topic>Quantitative analysis</topic><topic>Receptors</topic><topic>Research and Analysis Methods</topic><topic>Secretion</topic><topic>Subcommissural organ</topic><topic>Ventricle</topic><topic>Ventricles (cerebral)</topic><topic>Wnt protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nualart, Francisco</creatorcontrib><creatorcontrib>Cifuentes, Manuel</creatorcontrib><creatorcontrib>Ramírez, Eder</creatorcontrib><creatorcontrib>Martínez, Fernando</creatorcontrib><creatorcontrib>Barahona, María José</creatorcontrib><creatorcontrib>Ferrada, Luciano</creatorcontrib><creatorcontrib>Saldivia, Natalia</creatorcontrib><creatorcontrib>Bongarzone, Ernesto R</creatorcontrib><creatorcontrib>Thorens, Bernard</creatorcontrib><creatorcontrib>Salazar, Katterine</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nualart, Francisco</au><au>Cifuentes, Manuel</au><au>Ramírez, Eder</au><au>Martínez, Fernando</au><au>Barahona, María José</au><au>Ferrada, Luciano</au><au>Saldivia, Natalia</au><au>Bongarzone, Ernesto R</au><au>Thorens, Bernard</au><au>Salazar, Katterine</au><au>Daneman, Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperglycemia increases SCO-spondin and Wnt5a secretion into the cerebrospinal fluid to regulate ependymal cell beating and glucose sensing</atitle><jtitle>PLoS biology</jtitle><date>2023-09-21</date><risdate>2023</risdate><volume>21</volume><issue>9</issue><spage>e3002308</spage><epage>e3002308</epage><pages>e3002308-e3002308</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>Hyperglycemia increases glucose concentrations in the cerebrospinal fluid (CSF), activating glucose-sensing mechanisms and feeding behavior in the hypothalamus. Here, we discuss how hyperglycemia temporarily modifies ependymal cell ciliary beating to increase hypothalamic glucose sensing. A high level of glucose in the rat CSF stimulates glucose transporter 2 (GLUT2)-positive subcommissural organ (SCO) cells to release SCO-spondin into the dorsal third ventricle. Genetic inactivation of mice GLUT2 decreases hyperglycemia-induced SCO-spondin secretion. In addition, SCO cells secrete Wnt5a-positive vesicles; thus, Wnt5a and SCO-spondin are found at the apex of dorsal ependymal cilia to regulate ciliary beating. Frizzled-2 and ROR2 receptors, as well as specific proteoglycans, such as glypican/testican (essential for the interaction of Wnt5a with its receptors) and Cx43 coupling, were also analyzed in ependymal cells. Finally, we propose that the SCO-spondin/Wnt5a/Frizzled-2/Cx43 axis in ependymal cells regulates ciliary beating, a cyclic and adaptive signaling mechanism to control glucose sensing.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><doi>10.1371/journal.pbio.3002308</doi><orcidid>https://orcid.org/0000-0002-7762-1417</orcidid><orcidid>https://orcid.org/0000-0003-1414-469X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-7885 |
ispartof | PLoS biology, 2023-09, Vol.21 (9), p.e3002308-e3002308 |
issn | 1545-7885 1544-9173 1545-7885 |
language | eng |
recordid | cdi_plos_journals_3069169191 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS) |
subjects | Analysis Biology and Life Sciences Cerebrospinal fluid Chemoreception Cilia Connexin 43 Dextrose Endoplasmic reticulum Ependymal cells Feeding behavior Frizzled protein Glucose Glucose transporter Glycoproteins Heparan sulfate proteoglycans Hyperglycemia Hypothalamus Inactivation Independent sample Kinases Medicine and Health Sciences Morphogenesis Physical Sciences Proteoglycans Quantitative analysis Receptors Research and Analysis Methods Secretion Subcommissural organ Ventricle Ventricles (cerebral) Wnt protein |
title | Hyperglycemia increases SCO-spondin and Wnt5a secretion into the cerebrospinal fluid to regulate ependymal cell beating and glucose sensing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T08%3A04%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperglycemia%20increases%20SCO-spondin%20and%20Wnt5a%20secretion%20into%20the%20cerebrospinal%20fluid%20to%20regulate%20ependymal%20cell%20beating%20and%20glucose%20sensing&rft.jtitle=PLoS%20biology&rft.au=Nualart,%20Francisco&rft.date=2023-09-21&rft.volume=21&rft.issue=9&rft.spage=e3002308&rft.epage=e3002308&rft.pages=e3002308-e3002308&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.3002308&rft_dat=%3Cgale_plos_%3EA767828143%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069169191&rft_id=info:pmid/&rft_galeid=A767828143&rft_doaj_id=oai_doaj_org_article_d108a0932339447eaf5226b30d4a66f4&rfr_iscdi=true |