On the effectiveness of a contrastive cascade graph learning framework: The power of synthetic cascade data

Analyzing the dynamics of information diffusion cascades and accurately predicting their behavior holds significant importance in various applications. In this paper, we concentrate specifically on a recently introduced contrastive cascade graph learning framework, for the task of predicting cascade...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2023-10, Vol.18 (10), p.e0293032-e0293032
Hauptverfasser: Suzuki, Daiki, Tsugawa, Sho, Tsukamoto, Keiichiro, Igari, Shintaro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Analyzing the dynamics of information diffusion cascades and accurately predicting their behavior holds significant importance in various applications. In this paper, we concentrate specifically on a recently introduced contrastive cascade graph learning framework, for the task of predicting cascade popularity. This framework follows a pre-training and fine-tuning paradigm to address cascade prediction tasks. In a previous study, the transferability of pre-trained models within the contrastive cascade graph learning framework was examined solely between two social media datasets. However, in our present study, we comprehensively evaluate the transferability of pre-trained models across 13 real datasets and six synthetic datasets. We construct several pre-trained models using real cascades and synthetic cascades generated by the independent cascade model and the Profile model. Then, we fine-tune these pre-trained models on real cascade datasets and evaluate their prediction accuracy based on the mean squared logarithmic error. The main findings derived from our results are as follows. (1) The pre-trained models exhibit transferability across diverse types of real datasets in different domains, encompassing different languages, social media platforms, and diffusion time scales. (2) Synthetic cascade data prove effective for pre-training purposes. The pre-trained models constructed with synthetic cascade data demonstrate comparable effectiveness to those constructed using real data. (3) Synthetic cascade data prove beneficial for fine-tuning the contrastive cascade graph learning models and training other state-of-the-art popularity prediction models. Models trained using a combination of real and synthetic cascades yield significantly lower mean squared logarithmic error compared to those trained solely on real cascades. Our findings affirm the effectiveness of synthetic cascade data in enhancing the accuracy of cascade popularity prediction.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0293032