IPSO-LSTM hybrid model for predicting online public opinion trends in emergencies
When emergencies are widely discussed and shared, it may lead to conflicting opinions and negative emotions among internet users. Accurately predicting sudden network public opinion events is of great importance. Therefore, this paper constructs a hybrid forecasting model to solve this problem. Firs...
Gespeichert in:
Veröffentlicht in: | PloS one 2023-10, Vol.18 (10), p.e0292677-e0292677 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0292677 |
---|---|
container_issue | 10 |
container_start_page | e0292677 |
container_title | PloS one |
container_volume | 18 |
creator | Mu, Guangyu Liao, Zehan Li, Jiaxue Qin, Nini Yang, Ziye |
description | When emergencies are widely discussed and shared, it may lead to conflicting opinions and negative emotions among internet users. Accurately predicting sudden network public opinion events is of great importance. Therefore, this paper constructs a hybrid forecasting model to solve this problem. First, this model introduces an improved inertia weight and an adaptive variation operation to enhance the Particle Swarm Optimization (PSO) algorithm. Then, the improved PSO (IPSO) algorithm optimizes the parameters of the Long Short-Term Memory (LSTM) neural network. Finally, the IPSO-LSTM hybrid prediction model is constructed to forecast and analyze emergency public opinion dissemination trends. The experimental outcomes indicate that the IPSO-LSTM model surpasses others and has high prediction accuracy. In the four emergency predictions we select, the MAPE value of IPSO-LSTM is 74.27% better than that of BP, 33.96% better than that of LSTM, and 13.59% better than that of PSO-LSTM on average. This study aims to assist authorities in quickly identifying potential public opinion crises, developing effective strategies, and promoting sustainable and positive growth in the network environment. |
doi_str_mv | 10.1371/journal.pone.0292677 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2875359374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A768398692</galeid><doaj_id>oai_doaj_org_article_a3c62b0a17c944b19ca4060b423c03c3</doaj_id><sourcerecordid>A768398692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c670t-378d5cee8a43c37f9474627970749ccb5ffb2bb01451f1667fa6b596637a33933</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6DwQLguhFx3w1aa5kWfwYGBl1Vm9DmqadDGlSk1bcf2_GqbKVvZBcJJw85z0fvFn2FIIVxAy-PvgpOGlXg3d6BRBHlLF72TnkGBUUAXz_1vssexTjAYASV5Q-zM4wq2DJK3yefV5_2m2Lze76Y76_qYNp8t432uatD_kQdGPUaFyXe2eN0_kw1dao3A_GGe_yMWjXxNy4XPc6dNopo-Pj7EErbdRP5vsi-_ru7fXVh2Kzfb--utwUijIwFqmFplRaV5JghVnLCSMUMc4AI1ypumzbGtU1gKSELaSUtZLWJacUM4kxx_gie3bSHayPYt5GFKhiJS45ZiQR6xPReHkQQzC9DDfCSyN-B3zohAyjUVYLiRVFNZCQKU5IDbmSBFBQE4QVSP0lrTdztanudaO0G4O0C9HljzN70fkfAoKSEkhoUng5KwT_fdJxFL2JSlsrnfbTqfGqRAQcG3_-D3r3eDPVyTSBca1PhdVRVFwyWmFeUY4StbqDSqfRvVHJO61J8UXCq0VCYkb9c-zkFKNY7778P7v9tmRf3GL3WtpxH72dxuSkuATJCVTBxxh0-3fLEIij9f9sQxytL2br419qkvK8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2875359374</pqid></control><display><type>article</type><title>IPSO-LSTM hybrid model for predicting online public opinion trends in emergencies</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Mu, Guangyu ; Liao, Zehan ; Li, Jiaxue ; Qin, Nini ; Yang, Ziye</creator><contributor>Bacanin, Nebojsa</contributor><creatorcontrib>Mu, Guangyu ; Liao, Zehan ; Li, Jiaxue ; Qin, Nini ; Yang, Ziye ; Bacanin, Nebojsa</creatorcontrib><description>When emergencies are widely discussed and shared, it may lead to conflicting opinions and negative emotions among internet users. Accurately predicting sudden network public opinion events is of great importance. Therefore, this paper constructs a hybrid forecasting model to solve this problem. First, this model introduces an improved inertia weight and an adaptive variation operation to enhance the Particle Swarm Optimization (PSO) algorithm. Then, the improved PSO (IPSO) algorithm optimizes the parameters of the Long Short-Term Memory (LSTM) neural network. Finally, the IPSO-LSTM hybrid prediction model is constructed to forecast and analyze emergency public opinion dissemination trends. The experimental outcomes indicate that the IPSO-LSTM model surpasses others and has high prediction accuracy. In the four emergency predictions we select, the MAPE value of IPSO-LSTM is 74.27% better than that of BP, 33.96% better than that of LSTM, and 13.59% better than that of PSO-LSTM on average. This study aims to assist authorities in quickly identifying potential public opinion crises, developing effective strategies, and promoting sustainable and positive growth in the network environment.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0292677</identifier><identifier>PMID: 37815983</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Biology and Life Sciences ; Computer and Information Sciences ; Emergencies ; Emergency management ; Emotions ; Evaluation ; Forecasting models ; Forecasts and trends ; Long short-term memory ; Management ; Mathematical models ; Mathematical optimization ; Modelling ; Neural networks ; Particle swarm optimization ; Physical Sciences ; Prediction models ; Public opinion ; Research and Analysis Methods ; Sentiment analysis ; Social Sciences ; Trends</subject><ispartof>PloS one, 2023-10, Vol.18 (10), p.e0292677-e0292677</ispartof><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Mu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Mu et al 2023 Mu et al</rights><rights>2023 Mu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c670t-378d5cee8a43c37f9474627970749ccb5ffb2bb01451f1667fa6b596637a33933</citedby><cites>FETCH-LOGICAL-c670t-378d5cee8a43c37f9474627970749ccb5ffb2bb01451f1667fa6b596637a33933</cites><orcidid>0000-0002-0884-8415 ; 0000-0002-0199-3978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10564146/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10564146/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2929,23867,27925,27926,53792,53794</link.rule.ids></links><search><contributor>Bacanin, Nebojsa</contributor><creatorcontrib>Mu, Guangyu</creatorcontrib><creatorcontrib>Liao, Zehan</creatorcontrib><creatorcontrib>Li, Jiaxue</creatorcontrib><creatorcontrib>Qin, Nini</creatorcontrib><creatorcontrib>Yang, Ziye</creatorcontrib><title>IPSO-LSTM hybrid model for predicting online public opinion trends in emergencies</title><title>PloS one</title><description>When emergencies are widely discussed and shared, it may lead to conflicting opinions and negative emotions among internet users. Accurately predicting sudden network public opinion events is of great importance. Therefore, this paper constructs a hybrid forecasting model to solve this problem. First, this model introduces an improved inertia weight and an adaptive variation operation to enhance the Particle Swarm Optimization (PSO) algorithm. Then, the improved PSO (IPSO) algorithm optimizes the parameters of the Long Short-Term Memory (LSTM) neural network. Finally, the IPSO-LSTM hybrid prediction model is constructed to forecast and analyze emergency public opinion dissemination trends. The experimental outcomes indicate that the IPSO-LSTM model surpasses others and has high prediction accuracy. In the four emergency predictions we select, the MAPE value of IPSO-LSTM is 74.27% better than that of BP, 33.96% better than that of LSTM, and 13.59% better than that of PSO-LSTM on average. This study aims to assist authorities in quickly identifying potential public opinion crises, developing effective strategies, and promoting sustainable and positive growth in the network environment.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Biology and Life Sciences</subject><subject>Computer and Information Sciences</subject><subject>Emergencies</subject><subject>Emergency management</subject><subject>Emotions</subject><subject>Evaluation</subject><subject>Forecasting models</subject><subject>Forecasts and trends</subject><subject>Long short-term memory</subject><subject>Management</subject><subject>Mathematical models</subject><subject>Mathematical optimization</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>Particle swarm optimization</subject><subject>Physical Sciences</subject><subject>Prediction models</subject><subject>Public opinion</subject><subject>Research and Analysis Methods</subject><subject>Sentiment analysis</subject><subject>Social Sciences</subject><subject>Trends</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rr6DwQLguhFx3w1aa5kWfwYGBl1Vm9DmqadDGlSk1bcf2_GqbKVvZBcJJw85z0fvFn2FIIVxAy-PvgpOGlXg3d6BRBHlLF72TnkGBUUAXz_1vssexTjAYASV5Q-zM4wq2DJK3yefV5_2m2Lze76Y76_qYNp8t432uatD_kQdGPUaFyXe2eN0_kw1dao3A_GGe_yMWjXxNy4XPc6dNopo-Pj7EErbdRP5vsi-_ru7fXVh2Kzfb--utwUijIwFqmFplRaV5JghVnLCSMUMc4AI1ypumzbGtU1gKSELaSUtZLWJacUM4kxx_gie3bSHayPYt5GFKhiJS45ZiQR6xPReHkQQzC9DDfCSyN-B3zohAyjUVYLiRVFNZCQKU5IDbmSBFBQE4QVSP0lrTdztanudaO0G4O0C9HljzN70fkfAoKSEkhoUng5KwT_fdJxFL2JSlsrnfbTqfGqRAQcG3_-D3r3eDPVyTSBca1PhdVRVFwyWmFeUY4StbqDSqfRvVHJO61J8UXCq0VCYkb9c-zkFKNY7778P7v9tmRf3GL3WtpxH72dxuSkuATJCVTBxxh0-3fLEIij9f9sQxytL2br419qkvK8</recordid><startdate>20231010</startdate><enddate>20231010</enddate><creator>Mu, Guangyu</creator><creator>Liao, Zehan</creator><creator>Li, Jiaxue</creator><creator>Qin, Nini</creator><creator>Yang, Ziye</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0884-8415</orcidid><orcidid>https://orcid.org/0000-0002-0199-3978</orcidid></search><sort><creationdate>20231010</creationdate><title>IPSO-LSTM hybrid model for predicting online public opinion trends in emergencies</title><author>Mu, Guangyu ; Liao, Zehan ; Li, Jiaxue ; Qin, Nini ; Yang, Ziye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c670t-378d5cee8a43c37f9474627970749ccb5ffb2bb01451f1667fa6b596637a33933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Biology and Life Sciences</topic><topic>Computer and Information Sciences</topic><topic>Emergencies</topic><topic>Emergency management</topic><topic>Emotions</topic><topic>Evaluation</topic><topic>Forecasting models</topic><topic>Forecasts and trends</topic><topic>Long short-term memory</topic><topic>Management</topic><topic>Mathematical models</topic><topic>Mathematical optimization</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>Particle swarm optimization</topic><topic>Physical Sciences</topic><topic>Prediction models</topic><topic>Public opinion</topic><topic>Research and Analysis Methods</topic><topic>Sentiment analysis</topic><topic>Social Sciences</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mu, Guangyu</creatorcontrib><creatorcontrib>Liao, Zehan</creatorcontrib><creatorcontrib>Li, Jiaxue</creatorcontrib><creatorcontrib>Qin, Nini</creatorcontrib><creatorcontrib>Yang, Ziye</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mu, Guangyu</au><au>Liao, Zehan</au><au>Li, Jiaxue</au><au>Qin, Nini</au><au>Yang, Ziye</au><au>Bacanin, Nebojsa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IPSO-LSTM hybrid model for predicting online public opinion trends in emergencies</atitle><jtitle>PloS one</jtitle><date>2023-10-10</date><risdate>2023</risdate><volume>18</volume><issue>10</issue><spage>e0292677</spage><epage>e0292677</epage><pages>e0292677-e0292677</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>When emergencies are widely discussed and shared, it may lead to conflicting opinions and negative emotions among internet users. Accurately predicting sudden network public opinion events is of great importance. Therefore, this paper constructs a hybrid forecasting model to solve this problem. First, this model introduces an improved inertia weight and an adaptive variation operation to enhance the Particle Swarm Optimization (PSO) algorithm. Then, the improved PSO (IPSO) algorithm optimizes the parameters of the Long Short-Term Memory (LSTM) neural network. Finally, the IPSO-LSTM hybrid prediction model is constructed to forecast and analyze emergency public opinion dissemination trends. The experimental outcomes indicate that the IPSO-LSTM model surpasses others and has high prediction accuracy. In the four emergency predictions we select, the MAPE value of IPSO-LSTM is 74.27% better than that of BP, 33.96% better than that of LSTM, and 13.59% better than that of PSO-LSTM on average. This study aims to assist authorities in quickly identifying potential public opinion crises, developing effective strategies, and promoting sustainable and positive growth in the network environment.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>37815983</pmid><doi>10.1371/journal.pone.0292677</doi><tpages>e0292677</tpages><orcidid>https://orcid.org/0000-0002-0884-8415</orcidid><orcidid>https://orcid.org/0000-0002-0199-3978</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2023-10, Vol.18 (10), p.e0292677-e0292677 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2875359374 |
source | DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algorithms Analysis Biology and Life Sciences Computer and Information Sciences Emergencies Emergency management Emotions Evaluation Forecasting models Forecasts and trends Long short-term memory Management Mathematical models Mathematical optimization Modelling Neural networks Particle swarm optimization Physical Sciences Prediction models Public opinion Research and Analysis Methods Sentiment analysis Social Sciences Trends |
title | IPSO-LSTM hybrid model for predicting online public opinion trends in emergencies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T13%3A51%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IPSO-LSTM%20hybrid%20model%20for%20predicting%20online%20public%20opinion%20trends%20in%20emergencies&rft.jtitle=PloS%20one&rft.au=Mu,%20Guangyu&rft.date=2023-10-10&rft.volume=18&rft.issue=10&rft.spage=e0292677&rft.epage=e0292677&rft.pages=e0292677-e0292677&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0292677&rft_dat=%3Cgale_plos_%3EA768398692%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2875359374&rft_id=info:pmid/37815983&rft_galeid=A768398692&rft_doaj_id=oai_doaj_org_article_a3c62b0a17c944b19ca4060b423c03c3&rfr_iscdi=true |