Benchmarking variational AutoEncoders on cancer transcriptomics data

Deep generative models, such as variational autoencoders (VAE), have gained increasing attention in computational biology due to their ability to capture complex data manifolds which subsequently can be used to achieve better performance in downstream tasks, such as cancer type prediction or subtypi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2023-10, Vol.18 (10), p.e0292126-e0292126
Hauptverfasser: Eltager, Mostafa, Abdelaal, Tamim, Charrout, Mohammed, Mahfouz, Ahmed, Reinders, Marcel J. T, Makrodimitris, Stavros
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!