Benchmarking variational AutoEncoders on cancer transcriptomics data
Deep generative models, such as variational autoencoders (VAE), have gained increasing attention in computational biology due to their ability to capture complex data manifolds which subsequently can be used to achieve better performance in downstream tasks, such as cancer type prediction or subtypi...
Gespeichert in:
Veröffentlicht in: | PloS one 2023-10, Vol.18 (10), p.e0292126-e0292126 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0292126 |
---|---|
container_issue | 10 |
container_start_page | e0292126 |
container_title | PloS one |
container_volume | 18 |
creator | Eltager, Mostafa Abdelaal, Tamim Charrout, Mohammed Mahfouz, Ahmed Reinders, Marcel J. T Makrodimitris, Stavros |
description | Deep generative models, such as variational autoencoders (VAE), have gained increasing attention in computational biology due to their ability to capture complex data manifolds which subsequently can be used to achieve better performance in downstream tasks, such as cancer type prediction or subtyping of cancer. However, these models are difficult to train due to the large number of hyperparameters that need to be tuned. To get a better understanding of the importance of the different hyperparameters, we examined six different VAE models when trained on TCGA transcriptomics data and evaluated on the downstream tasks of cluster agreement with cancer subtypes and survival analysis. We studied the effect of the latent space dimensionality, learning rate, optimizer, initialization and activation function on the quality of subsequent downstream tasks on the TCGA samples. We found [beta]-TCVAE and DIP-VAE to have a good performance, on average, despite being more sensitive to hyperparameters selection. Based on these experiments, we derived recommendations for selecting the different hyperparameters settings. To ensure generalization, we tested all hyperparameter configurations on the GTEx dataset. We found a significant correlation ([rho] = 0.7) between the hyperparameter effects on clustering performance in the TCGA and GTEx datasets. This highlights the robustness and generalizability of our recommendations. In addition, we examined whether the learned latent spaces capture biologically relevant information. Hereto, we measured the correlation and mutual information of the different representations with various data characteristics such as gender, age, days to metastasis, immune infiltration, and mutation signatures. We found that for all models the latent factors, in general, do not uniquely correlate with one of the data characteristics nor capture separable information in the latent factors even for models specifically designed for disentanglement. |
doi_str_mv | 10.1371/journal.pone.0292126 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2873244591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A767847078</galeid><doaj_id>oai_doaj_org_article_8de5782f2a844838a151253c5a3f1ac9</doaj_id><sourcerecordid>A767847078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c670t-4340c115a90b410ee3bad74ab4a453c349e4f5bbcf6dff475e522d5d4b9bb4113</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhgdRsFb_geCAIHqxa75n5krW2taFQsGv23AmyexmnU3WJFP035vpjtKRXkguEpLnvCdv8hbFc4yWmFb47c4PwUG_PHhnlog0BBPxoDjBDSULQRB9eGf9uHgS4w4hTmshTooP741T2z2E79ZtyhsIFpL1WaxcDcmfO-W1CbH0rlTglAllCuCiCvaQ_N6qWGpI8LR41EEfzbNpPi2-Xpx_Ofu4uLq-XJ-trhZKVCgtGGVIYcyhQS3DyBjagq4YtAwYp4qyxrCOt63qhO46VnHDCdFcs7ZpcwGmp8WLo-6h91FOrqMkdUUJY7wZifWR0B528hBsdvZLerDydsOHjYSQrOqNrLXhVU06AjVjNa0Bc0zyNTjQDoNqsta7qdvQ7o1WxmXv_Ux0fuLsVm78jcSIc0ooygqvJ4XgfwwmJrm3UZm-B2f8cHtxRgQRgmT05T_o_fYmagPZgXWdz43VKCpXlahqVqGqztTyHioPbfKX5Yx0Nu_PCt7MCjKTzM-0gSFGuf786f_Z629z9tUddmugT9vo-2FMWJyD7Aiq4GMMpvv7yhjJMeJ_XkOOEZdTxOlv1bXuGw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2873244591</pqid></control><display><type>article</type><title>Benchmarking variational AutoEncoders on cancer transcriptomics data</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Eltager, Mostafa ; Abdelaal, Tamim ; Charrout, Mohammed ; Mahfouz, Ahmed ; Reinders, Marcel J. T ; Makrodimitris, Stavros</creator><contributor>Huang, Tao</contributor><creatorcontrib>Eltager, Mostafa ; Abdelaal, Tamim ; Charrout, Mohammed ; Mahfouz, Ahmed ; Reinders, Marcel J. T ; Makrodimitris, Stavros ; Huang, Tao</creatorcontrib><description>Deep generative models, such as variational autoencoders (VAE), have gained increasing attention in computational biology due to their ability to capture complex data manifolds which subsequently can be used to achieve better performance in downstream tasks, such as cancer type prediction or subtyping of cancer. However, these models are difficult to train due to the large number of hyperparameters that need to be tuned. To get a better understanding of the importance of the different hyperparameters, we examined six different VAE models when trained on TCGA transcriptomics data and evaluated on the downstream tasks of cluster agreement with cancer subtypes and survival analysis. We studied the effect of the latent space dimensionality, learning rate, optimizer, initialization and activation function on the quality of subsequent downstream tasks on the TCGA samples. We found [beta]-TCVAE and DIP-VAE to have a good performance, on average, despite being more sensitive to hyperparameters selection. Based on these experiments, we derived recommendations for selecting the different hyperparameters settings. To ensure generalization, we tested all hyperparameter configurations on the GTEx dataset. We found a significant correlation ([rho] = 0.7) between the hyperparameter effects on clustering performance in the TCGA and GTEx datasets. This highlights the robustness and generalizability of our recommendations. In addition, we examined whether the learned latent spaces capture biologically relevant information. Hereto, we measured the correlation and mutual information of the different representations with various data characteristics such as gender, age, days to metastasis, immune infiltration, and mutation signatures. We found that for all models the latent factors, in general, do not uniquely correlate with one of the data characteristics nor capture separable information in the latent factors even for models specifically designed for disentanglement.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0292126</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Analysis ; Benchmarks ; Biology and Life Sciences ; Cancer ; Care and treatment ; Clustering ; Computer and Information Sciences ; Correlation ; Datasets ; DNA sequencing ; Evaluation ; Learning ; Medicine and Health Sciences ; Metastases ; Modelling ; Mutation ; Neural networks ; Nucleotide sequencing ; Physical Sciences ; Probability distribution ; Research and Analysis Methods ; Social Sciences ; Transcriptomics ; Variables</subject><ispartof>PloS one, 2023-10, Vol.18 (10), p.e0292126-e0292126</ispartof><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Eltager et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Eltager et al 2023 Eltager et al</rights><rights>2023 Eltager et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c670t-4340c115a90b410ee3bad74ab4a453c349e4f5bbcf6dff475e522d5d4b9bb4113</citedby><cites>FETCH-LOGICAL-c670t-4340c115a90b410ee3bad74ab4a453c349e4f5bbcf6dff475e522d5d4b9bb4113</cites><orcidid>0000-0002-2392-7517 ; 0000-0002-3111-4268</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10553230/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10553230/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids></links><search><contributor>Huang, Tao</contributor><creatorcontrib>Eltager, Mostafa</creatorcontrib><creatorcontrib>Abdelaal, Tamim</creatorcontrib><creatorcontrib>Charrout, Mohammed</creatorcontrib><creatorcontrib>Mahfouz, Ahmed</creatorcontrib><creatorcontrib>Reinders, Marcel J. T</creatorcontrib><creatorcontrib>Makrodimitris, Stavros</creatorcontrib><title>Benchmarking variational AutoEncoders on cancer transcriptomics data</title><title>PloS one</title><description>Deep generative models, such as variational autoencoders (VAE), have gained increasing attention in computational biology due to their ability to capture complex data manifolds which subsequently can be used to achieve better performance in downstream tasks, such as cancer type prediction or subtyping of cancer. However, these models are difficult to train due to the large number of hyperparameters that need to be tuned. To get a better understanding of the importance of the different hyperparameters, we examined six different VAE models when trained on TCGA transcriptomics data and evaluated on the downstream tasks of cluster agreement with cancer subtypes and survival analysis. We studied the effect of the latent space dimensionality, learning rate, optimizer, initialization and activation function on the quality of subsequent downstream tasks on the TCGA samples. We found [beta]-TCVAE and DIP-VAE to have a good performance, on average, despite being more sensitive to hyperparameters selection. Based on these experiments, we derived recommendations for selecting the different hyperparameters settings. To ensure generalization, we tested all hyperparameter configurations on the GTEx dataset. We found a significant correlation ([rho] = 0.7) between the hyperparameter effects on clustering performance in the TCGA and GTEx datasets. This highlights the robustness and generalizability of our recommendations. In addition, we examined whether the learned latent spaces capture biologically relevant information. Hereto, we measured the correlation and mutual information of the different representations with various data characteristics such as gender, age, days to metastasis, immune infiltration, and mutation signatures. We found that for all models the latent factors, in general, do not uniquely correlate with one of the data characteristics nor capture separable information in the latent factors even for models specifically designed for disentanglement.</description><subject>Analysis</subject><subject>Benchmarks</subject><subject>Biology and Life Sciences</subject><subject>Cancer</subject><subject>Care and treatment</subject><subject>Clustering</subject><subject>Computer and Information Sciences</subject><subject>Correlation</subject><subject>Datasets</subject><subject>DNA sequencing</subject><subject>Evaluation</subject><subject>Learning</subject><subject>Medicine and Health Sciences</subject><subject>Metastases</subject><subject>Modelling</subject><subject>Mutation</subject><subject>Neural networks</subject><subject>Nucleotide sequencing</subject><subject>Physical Sciences</subject><subject>Probability distribution</subject><subject>Research and Analysis Methods</subject><subject>Social Sciences</subject><subject>Transcriptomics</subject><subject>Variables</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1rFDEUhgdRsFb_geCAIHqxa75n5krW2taFQsGv23AmyexmnU3WJFP035vpjtKRXkguEpLnvCdv8hbFc4yWmFb47c4PwUG_PHhnlog0BBPxoDjBDSULQRB9eGf9uHgS4w4hTmshTooP741T2z2E79ZtyhsIFpL1WaxcDcmfO-W1CbH0rlTglAllCuCiCvaQ_N6qWGpI8LR41EEfzbNpPi2-Xpx_Ofu4uLq-XJ-trhZKVCgtGGVIYcyhQS3DyBjagq4YtAwYp4qyxrCOt63qhO46VnHDCdFcs7ZpcwGmp8WLo-6h91FOrqMkdUUJY7wZifWR0B528hBsdvZLerDydsOHjYSQrOqNrLXhVU06AjVjNa0Bc0zyNTjQDoNqsta7qdvQ7o1WxmXv_Ux0fuLsVm78jcSIc0ooygqvJ4XgfwwmJrm3UZm-B2f8cHtxRgQRgmT05T_o_fYmagPZgXWdz43VKCpXlahqVqGqztTyHioPbfKX5Yx0Nu_PCt7MCjKTzM-0gSFGuf786f_Z629z9tUddmugT9vo-2FMWJyD7Aiq4GMMpvv7yhjJMeJ_XkOOEZdTxOlv1bXuGw</recordid><startdate>20231005</startdate><enddate>20231005</enddate><creator>Eltager, Mostafa</creator><creator>Abdelaal, Tamim</creator><creator>Charrout, Mohammed</creator><creator>Mahfouz, Ahmed</creator><creator>Reinders, Marcel J. T</creator><creator>Makrodimitris, Stavros</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2392-7517</orcidid><orcidid>https://orcid.org/0000-0002-3111-4268</orcidid></search><sort><creationdate>20231005</creationdate><title>Benchmarking variational AutoEncoders on cancer transcriptomics data</title><author>Eltager, Mostafa ; Abdelaal, Tamim ; Charrout, Mohammed ; Mahfouz, Ahmed ; Reinders, Marcel J. T ; Makrodimitris, Stavros</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c670t-4340c115a90b410ee3bad74ab4a453c349e4f5bbcf6dff475e522d5d4b9bb4113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Benchmarks</topic><topic>Biology and Life Sciences</topic><topic>Cancer</topic><topic>Care and treatment</topic><topic>Clustering</topic><topic>Computer and Information Sciences</topic><topic>Correlation</topic><topic>Datasets</topic><topic>DNA sequencing</topic><topic>Evaluation</topic><topic>Learning</topic><topic>Medicine and Health Sciences</topic><topic>Metastases</topic><topic>Modelling</topic><topic>Mutation</topic><topic>Neural networks</topic><topic>Nucleotide sequencing</topic><topic>Physical Sciences</topic><topic>Probability distribution</topic><topic>Research and Analysis Methods</topic><topic>Social Sciences</topic><topic>Transcriptomics</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eltager, Mostafa</creatorcontrib><creatorcontrib>Abdelaal, Tamim</creatorcontrib><creatorcontrib>Charrout, Mohammed</creatorcontrib><creatorcontrib>Mahfouz, Ahmed</creatorcontrib><creatorcontrib>Reinders, Marcel J. T</creatorcontrib><creatorcontrib>Makrodimitris, Stavros</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eltager, Mostafa</au><au>Abdelaal, Tamim</au><au>Charrout, Mohammed</au><au>Mahfouz, Ahmed</au><au>Reinders, Marcel J. T</au><au>Makrodimitris, Stavros</au><au>Huang, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Benchmarking variational AutoEncoders on cancer transcriptomics data</atitle><jtitle>PloS one</jtitle><date>2023-10-05</date><risdate>2023</risdate><volume>18</volume><issue>10</issue><spage>e0292126</spage><epage>e0292126</epage><pages>e0292126-e0292126</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Deep generative models, such as variational autoencoders (VAE), have gained increasing attention in computational biology due to their ability to capture complex data manifolds which subsequently can be used to achieve better performance in downstream tasks, such as cancer type prediction or subtyping of cancer. However, these models are difficult to train due to the large number of hyperparameters that need to be tuned. To get a better understanding of the importance of the different hyperparameters, we examined six different VAE models when trained on TCGA transcriptomics data and evaluated on the downstream tasks of cluster agreement with cancer subtypes and survival analysis. We studied the effect of the latent space dimensionality, learning rate, optimizer, initialization and activation function on the quality of subsequent downstream tasks on the TCGA samples. We found [beta]-TCVAE and DIP-VAE to have a good performance, on average, despite being more sensitive to hyperparameters selection. Based on these experiments, we derived recommendations for selecting the different hyperparameters settings. To ensure generalization, we tested all hyperparameter configurations on the GTEx dataset. We found a significant correlation ([rho] = 0.7) between the hyperparameter effects on clustering performance in the TCGA and GTEx datasets. This highlights the robustness and generalizability of our recommendations. In addition, we examined whether the learned latent spaces capture biologically relevant information. Hereto, we measured the correlation and mutual information of the different representations with various data characteristics such as gender, age, days to metastasis, immune infiltration, and mutation signatures. We found that for all models the latent factors, in general, do not uniquely correlate with one of the data characteristics nor capture separable information in the latent factors even for models specifically designed for disentanglement.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><doi>10.1371/journal.pone.0292126</doi><tpages>e0292126</tpages><orcidid>https://orcid.org/0000-0002-2392-7517</orcidid><orcidid>https://orcid.org/0000-0002-3111-4268</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2023-10, Vol.18 (10), p.e0292126-e0292126 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2873244591 |
source | DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Analysis Benchmarks Biology and Life Sciences Cancer Care and treatment Clustering Computer and Information Sciences Correlation Datasets DNA sequencing Evaluation Learning Medicine and Health Sciences Metastases Modelling Mutation Neural networks Nucleotide sequencing Physical Sciences Probability distribution Research and Analysis Methods Social Sciences Transcriptomics Variables |
title | Benchmarking variational AutoEncoders on cancer transcriptomics data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T04%3A29%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Benchmarking%20variational%20AutoEncoders%20on%20cancer%20transcriptomics%20data&rft.jtitle=PloS%20one&rft.au=Eltager,%20Mostafa&rft.date=2023-10-05&rft.volume=18&rft.issue=10&rft.spage=e0292126&rft.epage=e0292126&rft.pages=e0292126-e0292126&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0292126&rft_dat=%3Cgale_plos_%3EA767847078%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2873244591&rft_id=info:pmid/&rft_galeid=A767847078&rft_doaj_id=oai_doaj_org_article_8de5782f2a844838a151253c5a3f1ac9&rfr_iscdi=true |